Supporting Information

Le Gac et al. 10.1073/pnas.1207091109

NAS PNAS

Table S1. Cluster analysis of genes differentially expressed between the L and S lineages within and across generations

	Cluster (no. of genes)						
	e1 (367)	e2 (133)	e3 (96)	e4 (80)	e5 (57)	e6 (27)	
Cellular functions	Carbohydrate catabolism	Iron transport	Glyoxylate cycle	Glycerol metabolism	Enterobactin biosynthesis	Glutamate biosynthesis	
	Flagella biogenesis	Enterobactin biosynthesis	Nitrogen metabolism	Sulfur metabolism	Nonribosomal peptide biosynthesis	Aspartate biosynthesis	
	Amino sugar biosynthesis	RNA modification	Entner–Doudoroff pathway		Iron transport	Polysaccharide catabolism	
	Taxis	Nucleobase, nucleoside, and nucleotide interconversion	Glutamate biosynthesis		Nucleobase, nucleoside, and nucleotide interconversion		
	Fatty acid oxidation Peptidoglycan metabolism Amino acid catabolism Glycerol metabolism Methylglyoxal metabolism	Purine biosynthesis Response to temperature					
Regulators	crp, csiR, cusR, fadR, flhC, flhD, fucR, gutM, Irp, rpiR, srlR	fur, nadR, purR	fruR, glnG, gntR, iclR, nac, phoP, rpoN	cysB, mlc, glpR, nagC, nanR	fur	malT	

Columns show cellular functions and regulators that are overrepresented in the six gene expression clusters e1–e6. The number of genes in each cluster is shown after the cluster label. In addition, 37 genes showed variable expression between evolved samples but did not cluster. Many other genes showed no significant differences between samples or significant differences only between the ancestral and evolved samples, and those genes were not included in the cluster analysis. Cellular functions correspond to the Gene Ontology cellular process categories (1); regulators were identified using RegulonDB (2).

1. Riley M, et al. (2006) Escherichia coli K-12: A cooperatively developed annotation snapshot-2005. Nucleic Acids Res 34:1-9.

2. Gama-Castro S, et al. (2008) RegulonDB (version 6.0): Gene regulation model of *Escherichia coli* K-12 beyond transcription, active (experimental) annotated promoters and Textpresso navigation. *Nucleic Acids Res* 36(Database issue):D120–D124.

Table S2.	Cluster analysis of differential growth abilities across environmental conditions between the L and S lineages within and across
generation	15

	Cluster (no. of condit	ions)		
g1 (18)	g2 (9)	g3 (9)	Not clustered (12) or nonsignificant (3)*	No growth (43)
1% NaCl 1% sodium lactate D-fructose D-fructose-6-PO4 D-galactose D-mannitol D-mannose D-melibiose Fusidic acid Glycyl-L-proline Inosine L-serine PH 5 PH 6 Rifamycin SV Tetrazolium violet Troleandomycin Vancomycin	Acetic acid α-D-lactose D-galacturonic acid D-threhalose Glycerol L-alanine Mucic acid <i>N</i> -acetyl-D-glucosamine	α-D-glucose D-glucose-6-PO4 D-sorbitol L-lactic acid Methyl pyruvate <i>N</i> -acetyl-neuraminic acid P-hydroxy-phenylacetic acid Sodium butyrate	4% (vol/vol) NaCl Aztreonam Dextrin D-maltose D-saccharic acid D-serine Glucuronamide Guanidine HCl L-aspartic acid L-glutamic acid L-malic acid L-rhamnose N-acetyl-β-D-mannosamine N-acetyl-D-galactosamine Niaproof4	3-Methyl glucose 8% (vol/vol) NaCl Acetoacetic acid α -Hydroxy-butyric acid α -Keto-butyric acid α -Keto-glutaric acid β -Hydroxy-D,L-butyric acid β -methyl-D-glucoside Bromo-succinic acid Citric acid D-arabitol D-aspartic-acid D-cellobiose D-fucose D-lactic acid methyl ester D-malic acid D-raffinose D-salicilin D-serine D-turanose Formic acid γ -amino-butyric acid Gelatin Gentobiose L-arginine L-fucose L-galactonic acid Lactone L-histidine Lincomycin Lithium chloride L-pyroglutamic acid Minocycline Nalidixic acid Pectin Potassium tellurite Propionic acid Quinic acid Sodium bromate Stachyose Sucrose Tetrazolium blue Tween 40

*The three nonsignificant environments were aztreonam, D-mannitol, and glucuronamide. Aztreonam showed a difference only between the ancestral and evolved bacteria and thus was excluded from this analysis, which focused on differences between the L and S lineages within and across generations.

PNAS PNAS