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SI Text
How to Compute the Expected Skill. The performance of agent i in
period t is Pi;t ¼ ui þ εi;t, where ui represents the average per-
formance or skill of agent i and εi;t is a noise term that is inde-
pendent of ui and has expected value zero.
As described in the main text, we assume that ui is drawn from

a normal distribution with mean zero and SD σi;u. Moreover, σi;u
is drawn from a gamma distribution with parameters s; 1=s [i.e.,
the density of σi;u is ð1=sÞ− sσs− 1

i;u e− σi;u=ð1=sÞ=ΓðsÞ]. Similarly, εi;t is
drawn from a normal distribution with mean zero and SD σi;e,
and σi;e is drawn, independently of σi;u, from a gamma distribu-
tion with parameters n; 1=n.
To examine whether high performance is necessarily an in-

dicator of high skill, we consider an observer who has observed the
level of performance achieved by one agent in a particular period,
Pi;t. The task of the observer is to estimate the agents’ skill based
only on information about the observed performance. Because
our focus is on how much observers could, at best, learn from
performance, we assume that the observer is rational and capable
of implementing Bayes’ rule to calculate the expected ability
given the observed performance. That is, the observer computes
E½ui jPi;t ¼ pi;t�, the posterior expected value of ui given an ob-
served performance of Pi;t ¼ pi;t.
To compute E½ui jPi;t ¼ pi;t�, note first that if σi;u and σi;e are

known, then standard results (1) imply

E
h
ui jPi;t ¼ pi;t; σi;u; σi;e

i
¼ pi;tσ2i;u

σ2i;u þ σ2i;e
:

To get E½ui jPi;t ¼ pi;t�, we integrate over all values of σi;u and σi;e:
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Here, f ðσi;u; σi;e jPi;t ¼ pi;tÞ is the conditional joint density of σi;u
and σi;e given the observed performance. To find f ðσi;u; σi;e j
Pi;t ¼ pi;tÞ, we use Bayes’ rule (and note that conditional on σi;u
and σi;e, performance is normally distributed with mean zero and
variance σ2i;u þ σ2i;e). That is,

where guðσi;uÞ is the density of σi;u and geðσi;eÞ is the density
of σi;e.
Based on Eqs. S1 and S2, we can find E½ui jPi;t ¼ pi;t� for any

combination of (n; s) by numerically computing the associated
integrals. Fig. 3 provides an illustration and shows how a non-
monotonic pattern between performance and skill emerges when
n is smaller than s (n ¼ 1 and s ¼ 5). Extensive checks show that
whenever n< s, there is a value p∗ such that E½ui jPi;t ¼ pi;t� de-

creases in pi;t for pi;t > p∗ (the smaller the distance between n and
s, the higher the value of p∗).
Our model makes a number of assumptions about the skill and

noise distributions and about what can be observed. Nevertheless,
the basic result does not hinge upon these assumptions. Extensive
computations and simulations show that the same basic result—
that inferences about ability from observed performance can be
nonmonotonic—holds more generally.
Consider first the number of observations the observer has

access to. In the above model, we assumed that the observer could
only observe one performance for each individual and had to
make inferences about the underlying ability based on this single
observation. In reality, observers may be able to observe several
performances for each individual. Does the basic result still hold
in this case? Overall, the answer is yes. For example, consider a
special case of the above model (with no heterogeneity in the skill
distribution, s → ∞, and heterogeneity in the noise distribution,
n = 1) and suppose that the observer had access to two ob-
servations rather than one. That is, the observer has access to
two pieces of information, Pi;1 ¼ pi;1 and Pi;2 ¼ pi;2, and wants to
compute E½ui jPi;1 ¼ pi;1;Pi;2 ¼ pi;2�. We assume that Pi;1 ¼ pi;1
and Pi;2 ¼ pi;2 are independent draws from the same perfor-
mance distribution. In this case the basic result still holds, for the
cases we have computed. That is, E½ui jPi;1 ¼ pi;1;Pi;2 ¼ pi;2� is at
a maximum for intermediary levels of performance. Computations
show that the same result holds even if the observer has access to
more observations. The magnitude of the effect, however, declines
when the observer gets access to more observations, because
access to more observations implies that the observers learn the
underlying skill with higher precision.
Consider next alternative assumptions about the skill and

noise distributions. We assumed that the skill and noise terms
were drawn from a normal distribution with SDs drawn from
gamma distributions. We have tried other distributions for the
skill and noise terms and get similar results. For example, the
SDs could be drawn from exponential distributions [with density
ð1=bÞe− x=b ]. Computations show that expected skill is decreasing
in observed performance for extreme performances whenever
σi;e has a higher variance than σi;u (i.e., higher b). No general
sufficient condition seems to be known in the literature, how-
ever, regarding what type of skill and noise distributions our
result holds for.

What can be demonstrated is that if the skill and noise dis-
tributions are identical, then E½ui jPi;t ¼ pi;t� is increasing in pi;t.
To show this, note that Pi;t ¼ ui þ εi;t. Taking expectations on both
sides, we get pi;t ¼ E½ui jPi;t ¼ pi;t� þ E½ei;t jPi;t ¼ pi;t�. By symme-
try it follows that E½ui jPi;t ¼ pi;t� ¼ E½ei;t jPi;t ¼ pi;t�. Denote their
common value by c. It follows that pi;t ¼ 2c, or c ¼ 0:5pi;t.
Also, a necessary condition for our result is well-known: The

conditional density hðpi;t j uiÞ must violate the monotone likeli-
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hood ratio property [MLRP (2)]. The MLRP requires that for
u2 > u1, hðpi;t j u2Þ=hðpi;t j u1Þ is increasing in pi;t. When Pi;t ¼ uiþ
εi;t, hðpi;t j uiÞ = f ðpi;t − uiÞ, where f is the density of the noise
term. Thus, a violation of the MLRP requires that f ðpi;t − uiÞ
violates the MLRP. If there is a violation, there exists a prior
distribution gðuiÞ such that E½ui jPi;t ¼ pi;t� is not increasing in
pi;t. It follows that our result cannot happen when the noise term
is normally distributed (for which f ðpi;t − uiÞ satisfies the MLRP)
and our result could happen for some fat-tailed noise dis-
tributions, such as the Cauchy or the t distribution, which violate
the MLRP.
If the support of the skill distribution is bounded, a recent paper

(3) shows that reversals of conditional expectations will occur if
the noise distribution has much wider support, that is, has fatter
tails. For example, the skill distribution might range from −5 to
5, whereas the noise distribution might range from −30 to 30. In
such a case, an extreme performance cannot be due to very high
average skill (because it is bounded) but has to be due to noise.
In reality, observers can seldom exclude the possibility of very
high skill. Nevertheless, this result regarding skill distributions
with bounded support does lend support to our conjecture that
reversals of conditional expectations occur when the noise term
is more fat-tailed and thus more likely than the talent term to
generate extreme values.

Experimental Design. The purpose of the experiment was to ex-
amine whether people were able to learn a nonmonotonic as-
sociation between performance and skill, given that past studies
show that people tend to assume that higher performers are
more skilled.
Data. We examined people’s inference using four datasets with
different patterns between performance and skill. In two datasets
(datasets 1 and 3), the association between performance and skill
is nonmonotonic (the highest performers do not have the highest
level of skill), and in two datasets (datasets 2 and 4), the asso-
ciation between performance and skill is monotonic (higher
performance indicates higher expected skill).
All datasets were generated by the model described in the

above section in which Pi;t ¼ ui þ εi;t. The datasets differ only in
the parameters s and n. In dataset 1, there is no heterogeneity in
skill distribution but heterogeneity in noise distribution. That is,
ui is drawn from a normal distribution with mean zero and SD
equal to one, and σi;e is drawn from a gamma distribution with
parameters 1; 1 (n ¼ 1). For dataset 2, s ¼ 1 and n ¼ 5, which
implies that the association between performance and ability is
monotonic. For dataset 3, s ¼ 5 and n ¼ 1, which implies that the
association between performance and ability is nonmonotonic.
For dataset 4, s ¼ 1 and n ¼ 1, which implies that the association
between performance and ability is monotonic.
To ensure that participants in the experiment observed high,

intermediary, and low levels of performance, we did stratified
sampling rather than random sampling from the above models.
That is, to construct each dataset, wefirst simulated a large number
of performance–skill pairs following the above models. Then we
divided all of the simulated data into 10 groups according to their
performance levels, ranging from low to high observed perfor-
mance. We then randomly drew 20 observations from each of the
10 groups to get the 200 observations we needed for the experi-
ment. We calculated the average performance and skill levels for
each of the 10 groups to ensure that the association between per-
formance and ability of the sampled 200 agents followed the pat-
tern we describe above.
Experimental procedure. Participants were asked to predict the fu-
ture performance (i.e., average skill) of a sales representative
based on data on this sales representative’s past performance.
After a participant made a prediction, the actual future perfor-
mance was displayed. This was repeated for 200 different sales
representatives, resulting in 200 predictions per participant. The

instructions emphasized that the task was to learn the association
between past and future performance from the data displayed
rather than relying on prior knowledge about performance distri-
butions in sales.
The reward a participant obtained depended on how accurate

his or her predictions were. Participants started with a reward of
20 pounds, and for each prediction a penalty was deducted from
this sum based on the discrepancy between the predicted and the
actual future performance.
Participants. Participants were recruited from a behavioral labo-
ratory in the United Kingdom (32 responses, of which 18 were
male and 14 were female; average age was 27.21 y with an SD
of 6.36) and from Amazon Mechanical Turk (181 responses, of
which 99 were male and 56 were female; 26 were not willing to
respond to the question on sex; average age was 29.07 y with an SD
of 9.07). Sixty-three participants received dataset 1, 43 participants
received dataset 2, 56 participants received dataset 3, and 51
participants received dataset 4.
Analysis and results. For each participant, we first grouped the 200
predictions into 10 groups based on the observed performance
(ranging from low to high observed performance). We then cal-
culated the average prediction for each group of observations.
We were interested in whether participants’ predictions were

monotonically increasing: Are their predictions highest for the
top group, lower for the second group, lower still for the third
group, and so forth? We classified a participant as making
“nonmonotonic” predictions if (i) the average prediction for the
first group is lower than the average prediction for the second
group or (ii) the average prediction for the first group is lower
than the average prediction for the third group or (iii) the av-
erage prediction for the second group is lower than the average
prediction for the third group. Note that our focus is on possible
nonmonotonicity in predictions for relatively high performers
rather than on predictions for relatively low performers.
The result shows that few participants can be classified as

responding according to a nonmonotonic pattern even if the
underlying association is nonmonotonic and participants had
ample time, precise feedback, and incentives to be accurate.
Among the 119 participants who received dataset 1 or dataset 3 (in
which there was a nonmonotonic association between perfor-
mance and expected skill), 69 (58%) did not display a non-
monotonic pattern in their responses. Among the 94 participants
who received dataset 2 or dataset 4 (in which the association
between performance and expected skill was monotonic), 80
(86%) did not display a nonmonotonic pattern. These results
suggest that it is a challenge for people to switch to a nonlinear
model when evaluating performance, despite the presence of
immediate and clear feedback.

Simulation. The purpose of the simulation was to compare the
predictive accuracy of a linear and a third-degree polynomial
regression model. In the simulation, each model was fitted to data
on individual performance and skill levels. The estimated models
were then used to predict the skill level of a new individual based
on this individual’s observed performance.
The simulation was constructed as follows. In every period, the

performance, pi, of an individual with an unknown level of skill,
ui, is observed. The task is to predict the level of skill, ui, based
on the observed performance. After the prediction, the skill level
is revealed. Predictions are based on data on skill levels and
observed levels of performance acquired over time. After each
period, another performance–skill pair is observed. After t pe-
riods, data on t performance–skill pairs are available.
The linear model assumes that ui ¼ aþ bpi and estimates

a and b by ordinary least square regression using past data. The
predicted level of skill for the performance level observed in
period t is ût ¼ âþ b̂pt. The third-degree polynomial model as-
sumes that ui ¼ aþ bpi þ cp2i þ dp3i and estimates a, b, c, and
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d by minimizing the sum of squared deviation using past data.
The predicted level of skill for the performance level observed in
period t is ût ¼ âþ b̂pt þ ĉp2i þ d̂p3t .
The association between performance and skill was assumed to

be nonmonotonic. In particular, the performance level in period t
is constructed as follows: pt ¼ ut þ εt, where ut is drawn from a
normal distribution with mean zero and SD equal to σt;u and σt;u
is drawn from a gamma distribution with parameters ð5; 1=5Þ,
and εt is drawn, independently of ui, from a normal distribution
with mean zero and SD equal to σt;e and σt;e is drawn from a
gamma distribution with parameters ð1; 1Þ. This specification
implies that the noise distribution is more fat-tailed than the skill

distribution. It follows that there is a nonmonotonic association
between performance and skill, that is, the highest performers
are not the most skilled (Fig. 3).
In every period, we examine whether the prediction of the linear

or the polynomial model is more accurate, that is, closer to the
actual skill level. We repeated this simulation 1 million times and
computed, for each period, the percentage of the simulations in
which the linear model made the most accurate prediction. Al-
though the polynomialmodel can better fit the true nonmonotonic
association between pi and ui, Fig. S1 shows that the linear model
is nevertheless more accurate for the first 20 predictions, namely
when the sample size is small.
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Fig. S1. Illustration of how a linear model can outperform a third-degree polynomial model (which better fits the assumed nonmonotonic relationship
between performance and skill) in a sequential prediction task when information is scarce. Relative predictive accuracy is the proportion of 1 million simu-
lations in which the predicted skill level from a linear model is closer to the true value than the prediction from a third-degree polynomial model.
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