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Number of Dissociation Simulations Required for Statistical Signifi-
cance. In the preceding work the majority of the all-atom simula-
tions were propagated until complete dissociation of the kissing-
loop complex occurred—a stochastic process, which may take
many hundreds of nanoseconds depending on the magnitude
of the applied force. The long, indefinite simulation lengths at
low forces made it necessary to estimate ahead of time how many
duplicate trajectories were required for statistically significant
rate constants to be extracted. A compromise must therefore
be made to balance the need for adequate statistical accuracy
in the measurement of the dissociation constants and the prac-
tical constraints of finite computing resources. As we have re-
stricted our analysis to single-exponential kinetics (both for the
overall dissociation process and for the detailed intermediate
model of Fig. 6), we decided to examine the signal/noise ratio
of simulated events drawn from a noisy, exponential decay pro-
cess to assess how many dissociation simulations were needed. A
random pure-death process (1) was numerically simulated with
an initial population size of 5, 25, and 50 until the total population
reached 0. Interevent waiting times were randomly drawn from
an exponential distribution with a mean rate of 1.0∕s; represen-
tative survival curves of 10 such simulations for each initial con-
dition are shown in Fig. S1A. The maximum likelihood estimation
(MLE) (2) method was then used to attempt to extract out the
original rate constant from the individual decay trajectories as-
suming a pure-decay model. The resulting probability density
functions (PDFs) are shown in Fig. S1B.

We can see from the PDFs that when there are only five ob-
served events, the estimates range from 0.5� 0.5 to 1.5� 0.9.
Although this brackets the value of the true mean of 1.0∕s, these
estimates suffer both from poor accuracy and poor precision, with
error bars larger than the mean value itself. Therefore, we con-
clude that analysis of five dissociation events is only sufficient for
an order-of-magnitude estimate of the true ensemble dissociation
rate, and not sufficient for quantitative comparisons. With 25
events, the estimates for the rate range from 0.75� 0.06 to
1.25� 0.1; although the true error is still as large as approxi-
mately 25%, the increased precision is now sufficient for limited
quantitative comparisons to be made. For example, we would be
able to distinguish a process with rate 1.0 with another process
that differed by as little as factor of 2. Finally, with 50 events,
the estimates for the rate range from 0.9� 0.05 to 1.2� 0.04.
Although clearly an improved estimate, it comes at a significantly
increased computational cost when we are dealing with approxi-
mately 100 ns trajectories for each data point, each of which re-
quires several weeks of computation on 16 cpus. Therefore, on
the basis of these results we estimate that about 20 simulations
would serve as the best trade-off between statistical accuracy and
economical use of computer resources given the scope of the
questions we wish to address. It should be noted that many of
the steps in the microscopic dissociation model (Fig. 6) have re-
currence rates much larger than 1, meaning that these specific
transitions are in fact observed much more than 20 times when
all data is pooled across 20 trajectories. Several extremely fre-
quent transitions occur hundreds times, at which point MLE
methods are no longer required as standard nonlinear least
squares fitting becomes the preferred method for extracting rate

constants. Conversely, transitions with recurrence rates of <1 can
only be treated as order-of-magnitude estimates in the absence of
addition information.

Inclusion of Auxillary Information and Censored Events for Rate Esti-
mates.Not all transitions are as well-sampled as the highly recur-
rent k2 and k−2 transitions, so it is important to include as much
information as possible in our parameter estimation. For exam-
ple, only 11 of the 20 trajectories at 100 pN experienced dissocia-
tion within the timescale simulated (400 ns); although we cannot
quantify the missing nine dissociation times, we can be sure that
they occur at >400 ns, and this information should be included
when we estimate the overall dissociation time. The stochastic
pure-death model (Eq. 3) can compensate for these unobserved
(censored) events, so long as one knows the rank order of the
missing event. In this case, we evaluate Eq. 4 with n0 set to 20 but
only evaluate the product from n ¼ 1 to 11, and this procedure
allows us to estimate the overall lifetime accounting for the un-
observed events (in this case, only a lower bound). An analogous
procedure was followed in the calculation of the microscopic
rates in Table 2 whenever incomplete transitions were observed
due to truncation of the molecular dynamics trajectory.

There is also additional information at branch points where
one path is sampled much more than the other (i.e., low recur-
rence in Table 3). Although direct estimation of the infrequently
sampled transition is unreliable due to insufficient statistics
(recurrence ≤1), there is additional information contained in
the recurrence value of the more frequently sampled transition.
The estimate can therefore be improved using standard proper-
ties of Markovian processes (3).

If our Markovian process is characterized by a transition rate
matrix Q, as follows:

Q ¼

−μ1 λ12 … λ1n
λ21 −μ2 λij λ2n
..
.

λji
. .
. ..

.

λn1 λn2 … −μn

2
6664

3
7775;

then the total transition rate out of state i is characterized by the
diagonal element:

μi ¼ ∑
j≠i

λij:

Given that the system is initially at state i, the probability of a
particular transition i → j is

pij ¼
λij
μi

:

If there are only two competing transitions, and one of the
transitions is an irreversible one (i.e., recurrence ¼ 1), then
the ratio of the recurrences is the same as the ratio of the prob-
abilities and also of the individual transition rates. We can there-
fore improve our estimate of the poorly sampled transition by
enforcing the recurrence ratio to the highly sampled transition
with its correspondingly smaller error bars. Rates denoted by
an asterisk (*) in Table 2 were estimated in this fashion.
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Fig. S1. (A) Survival curves of simulated stochastic decay events with initial populations of 5, 25, and 50. Ten trajectories are simulated at each population size
to assess the expected signal/noise ratio. The mean decay rate is 1.0∕s, and interevent times were randomly drawn from an exponential distribution.
(B) Probability density functions resulting from maximum likelihood regression of the decay trajectories from A using a decay-only (i.e., pure-death) stochastic
model. It can be seen that the noise overwhelms the signal with only 5 events, with 25 events a reasonable confidence interval can be ascertained, and that
there are diminishing returns when scaling up to 50 events.

Movie S1. This montage of molecular dynamics trajectories shows the initial conformational rearrangement from coaxially stacked to parallel bonds of the
MMLV 2-bp complex. It then shows the dissociation pathway for the stack sandwich form of the complex where both flanking stacks are intact at 150 pN
constant force. Key nucleotides at the loop-loop interface are color coded: Gs are green, Cs are blue, and flanking As are red. Because of file size considerations
and long waiting times in-between events, several uninteresting intervening stretches of the trajectory have been omitted as indicated by the simulation time
index in the lower right corner. Intermediates are labeled according to the scheme in the summary to this article.

Movie S1 (MPG)
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Movie S2. This animation is a molecular dynamics trajectory for the dissociation of the MMLV 2-bp complex with no flanking stacks (open faced) at 150 pN
constant force. Key nucleotides at the loop-loop interface are color coded: Gs are green, Cs are blue, and flanking As are red. This entire trajectory lasts less
than 5 ns.

Movie S2 (MPG)
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