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Bayesian algorithmic details

We sample from the approximate posterior distribution 7(6|sg) (c.f. Equation 3 in the
main text) using the population-based sampler of [1]. The algorithm performs a sequence
of importance sampling steps d = 1,..., D, whereby each sampling distribution is a
smoothed version of the target distribution from the previous stage. Each target distribu-
tion in the sequence is defined by Equation (3) with the kernel scale parameter € replaced
by €4, where € > ... > €p ensures that the approximation Equation (3) improves at
each stage. The initial sampling distribution for each parameter is presented in Table 2
in the main text. For the analyses presented here, we use N = 2000 samples from each
distribution.

The sequence €y, . .., €p is dynamically constructed during algorithm implementation.
The initial value €; is set very high, to only exclude model simulations that go extinct
or have zero genetic diversity. The value of ¢; is determined by the median of the N
sampled values of {|s(4~1) — 54|}, where 51 denotes the vector of summary statistics
of an accepted parameter vector at stage d — 1. We use D = 6 importance sampling
stages as computation becomes untenable beyond this. Alternative adaptive approaches
for determining the sequence €, ..., €ep are presented in [2,3]

The sampling distribution at stage d is obtained by smoothing the weighted sample
at stage d — 1 with a univariate Gaussian kernel for the parameters Ry, log,q(1t), log(j1)
and Typ, and a binomial mass function
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for the locus-specific parameters ¢4, ..., ¢r, where we set ¢ = 20, which is substantially
larger than the largest observed repeat number over loci (which was 10). The standard
deviation of each Gaussian kernel is specified as the estimated standard deviation of the
previous target distribution for that parameter, following [4].




The smoothing kernel within Equation (3), K.(u) = K(|u|/€)/e, is uniform, so that
K.(u) = Uniform(—e, €). To measure the distance between observed and simulated sum-
mary statistics, we use Mahalanobis distance

Ju| = [s — 50| = /(s — 50)'S (s — s0),

where ¥ is the estimated covariance matrix of s|f, and where 6 is fixed in a region
expected to have high posterior probability [4]. For each analysis we specified 6 =
{4,1072%,300,71,...,7.1}. The value of 6 was chosen through inspection of forward
simulations of the model that resulted in similar levels of genetic diversity to the sample
of observed isolates.

A stochastic model of latent reactivation

To explore the effect of latent infection and reactivation, we constructed a stochastic
version of the model of tuberculosis dynamics proposed by [5]. The deterministic model
is defined by three differential equations,

as
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where S, L, X are the densities of susceptible, latently infected and active disease classes,
IT is the recruitment rate into susceptibles, § is the transmission coefficient, dy and 0 are
respectively the death rates due to tuberculosis and other causes, p is the proportion of
cases entering the active disease class immediately (1 — p become latently infected) and
v is the rate of reactivation of latent infection. We used as the initial condition a single
infectious case in an otherwise susceptible population of size 50,000. A compartmental
diagram of the latent reactivation model is shown in Figure S1 and the corresponding
rates are described in Table S1. The model was implemented using the Gillespie exact
algorithm [6]. The epidemiological parameters were set according to the values given in
[5] as described in the caption of Figure S2.

Figure S2 shows how the number of distinct genotypes, g, in a sample varies with the
mutation rate under both models. The implied density of the latency model simulations
along the dashed line (the observed statistic for the Venezuela data) is similar to the
marginal posterior distribution for log,,(x1) obtained under the SI model, suggesting
that the marginal posterior distribution under each model might be similar. Full Bayesian
analysis would be needed to confirm this point.



5S(t) SL(t) (6 +0x)X(t)

11 (1—-p)BX(t)S(t) vL(t)

pBX()S(t)

Figure S1. A compartmental diagram of the Susceptible-Exposed-Infectious
model of tuberculosis transmission with latent reactivation. The arrows
indicate the direction of transfer between compartments while the transition rates (more
fully described in Table S1) are listed next to the arrows.



Table S1. Transition rates in the stochastic Susceptible-Exposed-Infectious model
capturing latency.

Event Transition Rate
Birth S(t)— S(t)+1 II
Latent Infection L( ) — L(t) +1 (1—p)BX(t)S(t)
Li(t) = Li(t) + 1 (1 = p)BX,(£)S()
Active Infection X(t) = X({t)+1 pBX(t)S(t)
Xi(t) = Xi(t) +1  pBX;(t)S(t)
Latent Reactivation X(t) — X(¢)+1  vL(¢)
Xi(t) = X;(t)+1  vL(t)
L(t) — L(t) — 1 vL(t)
Susceptible Death  S(t) — S(t) — 1 dS(t)
Active Death X(t)—X(t)—1 (6+dx)X(t)
Xi(t) = X;(t) =1 0X4(¢)
Latent Death L(t) = L(t) — 1 dL(t)
Active Mutation Xi(t) = X;(t) — 1 M;X;(¢t)
Git) > Gt)+1~ ZG“) M; X, (t)
Xew(t) =1-" Xi(t)
Latent Mutation Li(t) — Li(t) — 1 L;(t)
H(t)— H(t)+ 1" 2 WM Li(t)
Luw() =1~ M;iLi(t)

* If an existing genotype is recreated by mutation, the count of that genotype is in-
cremented instead. The index ¢ corresponds to the same genotype between the latent
and active compartments. Note that the increment G(t) — G(t) + 1 occurs before the
assignment X¢(,)(t) = 1, and similarly for H(t).
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Figure S2. Prior-predictive relationship between log mutation rate and the
number of distinct genotypes under alternative models. Simulations are based
on the linear mutation model, with sample size and number of VNTR loci corresponding
to the observed sample from the Venezuela data set. SEI Model: the
Susceptible-Exposed-Infectious model for latent infection and reactivation; SI Model:
the Susceptible-Infectious model without latency. The dashed line indicates the
observed number of distinct genotypes from the Venezuela data set. The grey line shows
the (scaled) marginal posterior distribution for log;,(u1) for the model without latency,
using the Venezuela dataset. Parameter prior distributions are those in Table 2, main
text. The values of parameters other than those related to mutation are taken from
Blower et al [5] as follows: § = 0.02, dx = 0.139, p = 0.05, v = 0.00392. The values of
and IT are set as follows. Setting the disease-free equilibrium II/§ to a total community
size of 50,000, we set IT = 1000; we then derive [ from (5II)/d which we set to 5 (similar
to the value used in [5]).



An exponential model of mutation
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Figure S3. A comparison between marginal posterior distributions of p; from the
linear (solid line) and exponential (dashed line) mutation models. Here, we let the
mutation rate be an exponential function of repeat number, namely,

M; = Zle(eulRM — 1). Note that at zero repeats, the rate is zero.
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