
ONLINE METHODS

Linear mixed model and target optimization functions

We consider the following standard linear mixed model:

εΖuxWαy       Ku 1,0MVN~ m     nn Iε 1,0MVN~            

where n is the number of individuals and m is the number of groups/strains/clusters; y is a 

n by 1 vector of quantitative traits; W=(w1, …, wc) is a n by c matrix of covariates (fixed 

effects) including a column vector of 1s; α is a c by 1 vector of corresponding 

coefficients including the intercept; x is a n by 1 vector of marker genotypes; β is the 

effect size of the marker; Z is a n by m loading matrix and u is a m by 1 vector of random 

effects; ε is a n by 1 vector of errors; τ-1 is the variance of the residual errors; λ is the ratio 

between the two variance components; K is a known m by m relatedness matrix; In is a n

by n identity matrix; and MVN denotes multivariate normal distribution.

In the case of the HMDP data set, m is the number of strains, n is the number of animals, 

and matrix Z indicates which strain each animal arises from (zij=1 if individual i comes 

from strain j, and 0 otherwise). In the case of the WTCCC data set, m=n and Z is an 

identity matrix. Multiple covariates such as cluster memberships or eigenvectors 5-7 can 

be incorporated into W. 

We are interested in obtaining both the maximum likelihood estimates (MLE) and the 

restricted/residual maximum likelihood (REML) estimates, and further exact test 

statistics. We used the term "exact" in the main text and here for brevity, although a more 

precise term would be "effectively exact". This is because computing the statistics 

involves an optimization problem that is not guaranteed to be convex, and so in general 

one cannot guarantee to found the global optimum. However, existing optimization 

methods appear to be highly effective in practice. The following description and 

derivation of GEMMA algorithm uses a few properties that appeared before 18.



The log-likelihood and log-restricted likelihood functions for the standard linear mixed 

model are
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where

TZKZG  , nIGH   ,          11111 ,,,,   HxWxWHxWxWHHP TT
x .

If λ is known, we can easily obtain α̂ , β̂ and ̂ for both log-likelihood and log-restricted 

likelihood functions (see Supplementary Note for details). Therefore, finding MLE and 

REML estimates is equivalent to optimizing the following target functions with respect to 

λ:
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Optimization method overview

A direct naive evaluation of the likelihood function or the restricted-likelihood function 

has a computational time that increases with the cube of the number of individuals, 

because it involves calculating a matrix determinant and a matrix inversion. A similarly 

expensive computation, involving a matrix inversion and a few matrix-vector 

multiplications, is used for each update step in the standard Henderson's iterative 

optimization procedure 19. Therefore, Henderson's optimization algorithm is relatively 

slow. The algorithm EMMA 3 solves this problem by eigen-decompositions of matrix G



and matrix Px before optimization. After that, each target function involves only a 

summation of n scalar functions, thus making the derivation of the derivatives 

straightforward and their evaluations efficient. As a result, EMMA performs a single 

expensive calculation for each marker (decomposition of Px) followed by an iterative 

maximization scheme that involves only cheap operations (linear complexity in the 

number of individuals each iteration). 

We take a different approach and obtain the first and second derivatives in vector/matrix 

forms, before eigen-decomposition of the relatedness matrix G. Using three key 

recursions, we further show that both target functions and derivatives in vector/matrix 

forms, for each marker, despite their complicated appearance, are easy and efficient to 

evaluate during each optimization step. Therefore, we effectively replace the expensive 

eigen-decompostion of matrix Px for each SNP with a cheap matrix-vector multiplication

followed by a few recursions involving only scalar multiplications. Like EMMA, each 

iteration of our iterative maximization involves only cheap operations (linear complexity 

in number of individuals, quadratic complexity in the number of covariates c).

For numeric optimization, we start with Brent's method on the first derivative for 

stability, and follow with Newton-Raphson's method using the second derivative for 

efficiency. Details are given in Supplementary Note.

Note that the eigen-decomposition can be made faster when m<n with a modification of 

the Gram-Schmidt process3. However, this trick is not expected to make much 

improvement for a genome-wide analysis and has not been implemented in the current 

version of the software.

Derivatives of target functions

We obtain the first and second derivatives for the log-likelihood function:
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and the first and second derivatives for the log-restricted likelihood function:
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The above equations are obtained using a few matrix calculus properties listed in detail in 

Supplementary Note. Here,  denotes Kronecker product and vec denotes matrix 

vectorization (by stacking columns).

Several quantities require efficient evaluation

There are a few quantities we need to efficiently evaluate for each genetic marker in each 

optimization step. For the log-likelihood and log-restricted likelihood functions (3)-(4), 

we need to evaluate three quantities: H ,    xWHxW ,, 1T and yTPxy. For the 

derivatives of the log-likelihood and log-restricted likelihood functions (5)-(8), we need 

to evaluate two types of quantities: trace terms (trace(H-1G), trace(H-1GH-1G), 

trace(PxG), trace(PxGPxG)) and vector-matrix-vector product terms (yTPxGPxy, 

yTPxGPxGPxy). We notice that the trace terms can be derived from trace(H-1), trace(H-

1H-1), trace(Px), trace(PxPx), and the vector-matrix-vector product terms can be derived 

from yTPxy, yTPxPxy, yTPxPxPxy (details in Supplementary Note). Therefore, we need to 

efficiently evaluate three types of quantities for each SNP for any given λ:

1. Determinant terms H and    xWHxW ,, 1T .

2. Trace terms trace(H-1), trace(H-1H-1), trace(Px), trace(PxPx).

3. Vector-matrix-vector product terms yTPxy, yTPxPxy and yTPxPxPxy.

We separate the above terms into basic quantities (which involve matrix H) and induced 

quantities (which involve matrix Px), and describe their evaluations in the next two 

sections, respectively.



Calculation of the basic quantities

Here, we describe the efficient calculations of three basic quantities: the determinant 

term H , the trace terms trace(H-1) and trace(H-1H-1), and the vector-matrix-vector 

product terms in the forms of aTH-1b, aTH-1H-1b and aTH-1H-1H-1b, for a and b being 

equal to one of wi, x and y. We show in the next subsection that all the other terms can be 

derived from these basic quantities using recursions. 

Before the genome-wide analysis, we first obtain an eigen-decomposition G=UDUT with 

time complexity O(mn2),  where D=diag(δ1, …, δn) and δis are the eigen values. Since 

In=UUT, we have H=Udiag(λδ1+1, …, λδn+1)UT. Therefore, during each optimization step, 

the determinant term can be calculated with time complexity O(n):  
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Similarly the trace terms can be evaluated with time O(n): 
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Next, we define and calculate (vw1, …, vwc)=UTW, vy=UTy and vx=UTx, each with time 

complexity O(n2) and only vx needs to be calculated for each SNP. Now, for any a and b

being equal to one of wi, x and y, during each optimization step with time complexity 

O(n), we obtain:
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where vai and vbi are the corresponding ith elements in the vectors UTa and UTb, 

respectively. 



Recursions for the induced quantities

Here, we describe three recursions to efficiently evaluate the induced quantities from the 

basic quantities. The induced quantities are: the determinant term    xWHxW ,, 1T , the 

trace terms trace(Px) and trace(PxPx), and the vector-matrix-vector product terms yTPxy, 

yTPxPxy and yTPxPxPxy.

F i r s t ,  w e  d e f i n e  P0=H-1, Pc+1=Px, wc+1=x and Wi=(w1,…,wi), 
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This leads to a recursion for the trace terms trace(Pi) and trace(PiPi), and another 

recursion for the vector-matrix-vector product terms aTPib, aTPiPib and aTPiPiPib, for 

any vectors a, b of the right size (details in Supplementary Note). 

All the above recursions only involve scalar multiplications and calculations do not 

depend on the number of individuals. Therefore, the overall time complexity for 

GEMMA is O(mn2) (eigen-decompostion of G) + O(cn2) (evaluations of vwi and vy)+ 

O(pn2) (evaluation of vx for each SNP)+O(ptc2n) (evaluations of the basic quantities for 

each SNP during each optimization iteration)=O(mn2+cn2+pn2+ptc2n).


