A Novel, Unusually Efficacious Duocarmycin Carbamate Prodrug That Releases No Residual Byproduct

Amanda L. Wolfe,[†] Katharine K. Duncan,[†] Nikhil K. Parelkar, [‡] Scott J. Weir, [‡] George A. Vielhauer, ^{‡,§} and Dale L. Boger^{*,†}

[†]Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States, and [§]Department of Urology and [‡]University of Kansas Cancer Center, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, Kansas 66160, United States

Table of Contents

Figure S1. DNA Alkylation Gel.	.S2
Synthesis of 21	.S3
Solvolysis of 21	.83
Figure S2. UV-vis solvolysis spectrum of 21 at pH 2	.S4
Scheme S1. Synthesis of 24	.S4
Solvolysis of 24	.S5
Figure S3. UV-vis solvolysis spectrum of 24 at pH 1	S6
Figure S4. UV-vis solvolysis spectrum of 24 at pH 2	S6

Figure S1. Thermally induced strand cleavage of w794 DNA; DNA–agent incubation at 23 °C for 48 h, removal of unbound agent by EtOH precipitation, and 30 min of thermolysis (100 °C) followed by 8% denaturing PAGE and autoradiography. Lane 1, control DNA; lanes 2–5, Sanger G, C, A, and T sequencing reactions; lanes 6-8, (+)-**1** (1 × 10⁻⁴ to 1 × 10⁻⁶); lanes 9–10, (–)-**1** (1 × 10⁻³ to 1 × 10⁻⁴); lanes 11-12, (+)-**6** (1 × 10⁻¹ to 1 × 10⁻²).

N-tert-Butyloxycarbonyl-5-amino-1,2,9,9a-tetrahydrocyclopropa[*c*]benzo[*e*]indole-4-one (*N*-Boc-ACBI, 21). Compound 15 (4 mg, 11.4 µmol) in 0.2 mL of acetonitrile was treated with 1,8diazabicyclo[5.4.0]undec-7-ene (DBU, 6 µL, 0.043 mmol). The reaction mixture was allowed to stir a room temperature for 90 min. After 90 min, the solvent was evaporated under reduced pressure and the residue was purified by PTLC (SiO₂, 50% EtOAc/hexanes) to provide **21** (3.5 mg, 100% yield) as an orange oil. ¹H NMR (acetone-*d*₆, 600 MHz) δ 7.25 (br, 1H), 7.12 (t, *J* = 7.8 Hz, 1H), 6.59 (d, *J* = 8.4 Hz, 1H), 6.12 (d, *J* = 7.2 Hz, 1H), 4.00–3.94 (m, 2H), 2.85 (m, 1H), 1.53 (s, 9H), 1.45–1.40 (m, 2H). ¹³C NMR (acetone-*d*₆, 150 MHz) δ 191.0, 159.6, 153.1, 152.8, 144.3, 134.0, 116.3, 115.2, 109.9, 109.5, 85.5, 54.2, 35.0, 31.9, 29.0, 25.5. ESI-TOF HRMS *m/z* 313.1553 (M+H⁺, C₁₈H₂₀N₂O₃ requires 313.1547).

Solvolysis of 21. Compound **21** was dissolved in CH₃OH (1.5 mL). The CH₃OH solution was mixed with aqueous buffer (pH 2, 1.5 mL). The buffer contained 4:1:20 (v:v:v) 1.0 M citric acid, 0.2 M Na₂HPO₄, and H₂O, respectively. After mixing, the solvolysis solutions were stoppered and kept at 25 °C in the dark. The UV spectrum of the solutions was measured 3–4 times in the first two days and once a day for 2–4 weeks. The UV monitoring was continued until no further change was detectable. The long-wavelength absorption at 380 nm and short-wavelength absorption at 255 nm were monitored. The solvolysis rate constant and half-life were calculated from the data recorded at the short wavelength (255 nm) from the least square treatment of the slopes of plots of time versus ln $[(A_{Final}-A_{Initial})/(A_{Final}-A)]$.

pH 1 buffer: 10 M citric acid: 0.2 M Na₂HPO₄: H₂O (4:1:20)

 $t_{1/2} = 8.52 \text{ h}, k = 1.5 \times 10^{-5} \text{ s}^{-1}$

pH 2 buffer: 1.0 M citric acid: 0.2 M Na₂HPO₄: H₂O (4:1:20)

 $t_{1/2} = 40.3 \text{ h}, k = 5 \times 10^{-6} \text{ s}^{-1}$

Figure S2. UV-visible spectra of 21 in 50% CH_3OH -aqueous buffer (pH 2) recorded at various time intervals.

Scheme S1

Methyl 5-(Benzyloxy)-6-bromo-1-(chloromethyl)-1*H*-benzo[*e*]indole-3(2*H*)-carboxylate (22). Compound 13 (50 mg, 0.099 mmol) was dissolved in 4 N HCl in EtOAc (2.0 mL) and the mixture was allowed to stir at room temperature for 15 min. The solvent was removed under a stream of nitrogen and the residue was redissolved in anhydrous DMF (0.9 mL) and the solution was cooled to 0 °C. Once cooled, 60% NaH in mineral oil (9.5 mg, 0.23 mmol) was added and the reaction mixture was allowed to stir at 0 °C for 30 min. Methyl chloroformate (36 μ L, 0.47 mmol) was added and the solution was warmed to room temperature. After 4 h, the reaction mixture was quenched with the addition of saturated aqueous NH₄Cl and diluted with ethyl acetate. The organic layer was washed with H₂O, saturated aqueous NaCl, then dried over Na₂SO₄, and concentrated under reduced pressure. Flash chromatography (SiO₂, 2 × 8 cm, 15% EtOAc/hexanes elution) provided compound **22** (45 mg, 100%) as a off white solid. ¹H NMR (acetone- d_6 , 600 MHz) δ 7.95 (br, 1H), 7.80 (d, J = 8.4 Hz, 1H), 7.65 (d, J = 7.2 Hz, 3H), 7.41 (t, J = 7.8 Hz, 2H), 7.32 (m, 2H), 5.33 (s, 2H), 4.23 (dd, J = 2.4, 11.4 Hz, 1H), 4.18 (m, 1H), 4.11 (m, 1H), 3.96 (dd, J = 3, 10.8 Hz, 1H), 3.83 (s, 3H), 3.71 (dd, J = 10.8, 8.4 Hz, 1H). ¹³C NMR (acetone- d_6 , 150 MHz) δ 157.6, 154.8, 143.9, 138.4, 134.8, 132.6, 130.1, 129.9, 129.6, 129.3, 124.2, 121.6, 119.2, 117.2, 100.4, 72.5, 54.1, 53.9, 48.4, 43.2. IR (film) v_{max} 2951, 2357, 1614, 1361, 1133 cm⁻¹.ESI-TOF HRMS *m/z* 460.0317 (M+H⁺, C₂₂H₁₉BrClNO₃ requires 460.0310).

Methyl 6-Amino-1-(chloromethyl)-5-hydroxy-1*H*-benzo[*e*]indole-3(2*H*)-carboxylate (23). See compound 15 for procedure. Compound 23 was isolated as a tan solid (33% over 3 steps). ¹H NMR (THF- d_8 , 600 MHz) δ 7.39 (br, 1H), 7.07 (t, J = 7.8 Hz, 1H), 6.75 (d, J = 7.8 Hz, 1H), 6.30 (d, J = 7.8 Hz, 1H), 4.19 (d, J = 11.4 Hz, 1H), 4.03 (t, J = 9Hz, 1H), 3.90 (dd, J = 2.4, 10.8 Hz, 1H), 3.83 (m, 1H), 3.76 (s, 3H), 3.39 (t, J = 10.2 Hz, 1H). ¹³C NMR (THF- d_8 , 150 MHz) δ 158.6, 154.1, 148.9, 142.0, 134.3, 129.3, 114.4, 112.0, 110.0, 107.3, 98.2, 53.4, 52.7, 47.2, 43.6. IR (film) v_{max} 3197, 1672, 1584, 1483, 1411, 1336, 1150, 748 cm⁻¹. ESI-TOF HRMS *m*/*z* 307.0845 (M+H⁺, C₁₅H₁₅ClN₂O₃ requires 307.0844).

Methyl 5-Amino-1,2,9,9a-tetrahydro-1*H*-benzo[*e*]cyclopropa[*c*]indol-4-one-2-carboxylate (24). See compound 21 for procedure. Compound 24 was isolated as a bright yellow solid (70%). ¹H NMR (acetone-*d*₆, 600 MHz) δ 7.22 (br, 1H), 7.13 (t, *J* = 7.8 Hz, 1H), 6.60 (d, *J* = 8.4 Hz, 1H), 6.13 (d, *J* = 6.6 Hz, 1H), 4.05–3.99 (m, 2H), 3.80 (s, 3H), 2.89–2.86 (m, 1H), 1.46 (d, *J* = 6Hz, 2H). ¹³C NMR (acetone-*d*₆, 150 MHz) δ 190.2, 159.7, 153.8, 152.0, 143.5, 133.3, 115.5, 114.4, 109.3, 108.8, 53.4, 53.2, 34.1, 31.0, 24.9. IR (film) v_{max} 3441, 1730, 1600, 1537, 1440, 1291, cm⁻¹. ESI-TOF HRMS *m/z* 271.1077 (M+H⁺, C₁₅H₁₄N₂O₃ requires 271.1077).

Solvolysis of **24**:

pH 1 buffer: 10 M citric acid: 0.2 M Na₂HPO₄: H₂O (4:1:20)

 $t_{1/2} = 11.6 \text{ h}, k = 1.8 \times 10^{-5} \text{ sec}^{-1}$

pH 2 buffer: 1.0 M citric acid: 0.2 M Na₂HPO₄: H₂O (4:1:20)

 $t_{1/2} = 57.6$ h, $k = 3.3 \times 10^{-6} \text{ sec}^{-1}$

Figure S3. UV-visible spectra of **24** in 50% CH₃OH-aqueous buffer (pH 1) recorded at various time intervals.

Figure S4. UV-visible spectra of **24** in 50% CH₃OH-aqueous buffer (pH 2) recorded at various time intervals.