Supplementary Material Conservation of complex knotting and slipknotting patterns in proteins J. I. Sulkowska, E. J. Rawdon, K. C. Millett, J.N. Onuchic and A. Stasiak Guide to the abbreviated names of protein families listed in Table 1 (in the main text) and in tables S1 and S2. AA-permease - amino acid permeases, ART - arginine ADP-ribosyltransferase family, BCCT - betaine/carnitine/choline transporters, DUF - domains of unknown function, EMG1 - EMG1/NEP1 methyltransferases, Herpes_TK - herpes virus thymidine kinase, MetaL - Metalloenzymes, NCS1 - nucleobase-cation-symport-1 transporters, NPP- Nucleotide pyrophosphatases, PHY - Phytochrome region family, PmbA-TldD - Putative modulators of DNA gyrase, Pyr_Redox_2 - Pyridine nucleotide-disulphide oxidoreductases, RbsD/FucU Ribose/fucose transport protein family, SAM synthetase - S-adenosylmethionine synthetases, SDF - sodium:dicarboxylate symporters, SNF - Sodium: neuro-transmitter symporters, SpoU_methylase - SpoU rRNA Methylase family, SPOUT-MTase - Predicted SPOUT methyltransferase protein family, SSF - sodium:solute symporters, Trm 56 - tRNA ribose 2'-O-methyltransferases, tRNA_m1G_MT - tRNA (Guanine-1)-methyltransferases, virC2 - virulence C2 protein family. Explanation of notation used in Tables S1 and S2. In several cases, the structure determination of the proteins was not complete, resulting in an uncertainty concerning the position of some fragments. For the knotting analysis, we replaced missing fragments with a straight line if the missing peptide could be placed in the vicinity of the straight line without clashing with the rest of the chain (these cases are indicated with a). With b we indicated the cases, where the missing peptide had to follow an arc to avoid a steric clash with the rest of the determined protein structure An [n] indicates proteins whose knotted pattern are established in this study. Table S1: Simple knotting patterns (S3₁ and S3₁3₁) in slipknotted proteins. The pictograms show specific knotting patterns observed for the respective protein families (Pfam classification, [1]). Respective protein names, their PDB code and host species are indicated. Dark green and light green colors indicate right- and left- handed 3_1 knot, respectively. | Motif | Family | Protein/PDB | Source | Motif | Family | Protein/PDB | Source | |-------|-------------------------|---|---|-------|-----------------------|---|---| | | Alk
phos-
phatase | AP/2x98 [n] | Halobacteriu | - | Alk
sulfa-
tase | PUF/3lxq | Vibrio | | | Alk
phos-
phatase | AP/1ew2
AP/1shn | Human
Shrimp | | DUF | $\begin{array}{c} \mathrm{DUF1874/2j85} \\ \mathrm{Protein} \\ 114/2\mathrm{x4i}^{a}[\mathrm{n}] \end{array}$ | Rudivirus
Rudivirus | | | Alk
phos-
phatase | AP/1alk | E.coli | | NPP | $\begin{array}{c} PhnA/1ei6[n] \\ -/2gso[n] \end{array}$ | Pseudomonas
Xanthomonas | | | Alk
phos-
phatase | TAP/2iuc ^a | Antarctic
bacterium | | Herpes
_TK | -/1osn ^a [n]
HSV1-T/1p7c
EHV4-
TK/1p6x | Varicellovirus
Simplexvirus
Varicellovirus | | | Alk
phos-
phatase | SCAP/3a52
[n]
-/3e2d [n] | Shewanella
Vibrio | | MetaL | PMG/1ejj[n]
PMG/3igy[n]
PMG/2ify[n] | Geobacillus
Leishmania
Bacillus an-
thracis | | • | Alk
sulfa-
tase | PALK/2vqr[n]
pehA/2w8s[n]
YidJ/2qzu[n]
YidJ/3b5q[n]
Putative
arylsulfa-
tase/3ed4 | Agrobacterium
Burkholderia
Bacteroides
Bacteroides
E.coli | - | RbsD /
FucU | -/2wcu[n]
FuCu/3mvk[n]
-/3e7n[n]
Atu2016/2ob5[n]
RbsD/1ogc[n] | Mouse Bifidobacteriu Salmonella Agrobacterium Bacillus sub- tilis | | | Alk
sulfa-
tase | AS/1hdh[n] | Pseudomonas | | PmbA-
TldD | ${ m PmbA/3qtd}^a[{ m n}]$
${ m PmbA/1vpb[n]}$
${ m PmbA/1vl4}^a[{ m n}]$ | Pseudomonas
Bacteroides
Thermotoga | | • | Alk
sulfa-
tase | $\begin{array}{c} LTA/2w8d[n] \\ LTA/2w5q[n] \end{array}$ | Bacillus
Staphylococcus | | ADP-
ribo | ART/1gy0[n] | Rat | | | Alk
sulfa-
tase | ${ m ASA/1auk}^a { m ASB/1fsu}^a { m [n]}$ | Human
Human | | Pyr_redox_2 | AIF/1gv4[n] | Mouse | | | | | | | SDF | GltPh/1xfh | Pyrococcus
horikoshii | Table S 2: Simple knotting patterns (K3₁ and K3₁3₁) in knotted proteins. The pictograms show specific knotting patterns observed for the respective protein families (Pfam classification, [1]). Respective protein names, their PDB code and host species are indicated. Dark green and light green colors indicate right- and left- hand 3_1 knot, respectively. | Motif | Family | Protein/PDB | Source | Motif | Family | Protein/PDB | Source | |-------|--|--|--|-------|-----------------------------------|--|--| | | Carbonic anhydrase Carbonic anhydrase | CA I/1hcb
CA II/1lug
CA II/1v9e
CA II/1y7w
CA III/1z93
CA III/1flj
CA IV/2znc
CA IV/1znc
CA V/1keq | Human
Human
Bovine
D. salina
Human
Rat
Human
Mouse
Mouse | | SpoU_methy lase SpoU_methy-lase | tRNAm/1zjr
TRNAm/1v2x
tRNAm/3e5y
putm/3ic6
-/3onp
tRNAm/3n4j[n]
tRNAm/3l8u[n]
TAR/2ha8
-/3ilk ^a | Aquifex Thermus Pseudomallei Neisseria Bordetella Yersinia Streptococcus Human Haemophilus | | | Carbonic
anhy-
drase | CA VI/3fe4[n]
CA VI/1kop | Human
N.
gonor-
rhoeae | | SpoU_
methy
lase | RNA2o/1ipa
-/1gz0
RRNAm/1x7o
RNAm/2i6d
rRNA/3gyq
YibK/1j85 | Thermus E.coli Streptomyces Porphyromonas Streptomyces Haemophilus | | | Carbonic
anhy-
drase | CA VIII/2w2j[n] CA IX/3iai[n] CA XII/1jd0 CA XIII/3czv[n] CA XIV/1rj6 | Human
Human
Human
Human
Mouse | | Methyl-
trans_
RNA | rmsE/1nxz
rmsE/1vhk a
-/1v6z
PUF/3kw2 a [n]
PUF/2cx8
PUF/1z85 b
rsmE/2egy | Haemophilus Bacillus Thermus Porphyromonas Thermus Thermotoga Aquifex | | | Carbonic
anhy-
drase | PTPRZ
/3jxf[n] | Human | | EMG1
methyl
transf
erase | $\begin{array}{c} \mathrm{NEP1/2v3k^a[n]} \\ \mathrm{NEP1/3o7b[n]} \\ \mathrm{NEP1/3bbd} \end{array}$ | Saccharomyces
Archaeoglobus
Methano-
caldococcus | | | Carbonic
anhy-
drase | PTPRZ
/3jxh[n]
PTPRZ
/3jxg[n] | Human
Mouse | | Trm56 | $\frac{\mathrm{Trm}56/2\mathrm{o}3\mathrm{a}^a}{\mathrm{Trm}56/2\mathrm{yy}8}$ | Archaeoglobus
Pyrococcus | | | virC2 | -/2rh3 | Agro-
bacterium | | SPOUT
_MTase | $\begin{array}{c} {\rm YbeA/1ns5^a} \\ {\rm YbeA/1o6d} \\ {\rm YbeA/1vh0} \\ {\rm YbeA/1to0^a} \end{array}$ | E.coli
Thermotoga
Staphylococcus
Bacillus | | Motif | Family | Protein/PDB | Source | Motif | Family | Protein/PDB | Source | |-------|----------------------------|------------------------------|----------------------------|-------|------------------------|--|---| | | Ribbon-
helix-
helix | PUF/2efv | Methano-
caldococcus | | tRNA
_m1G
_MT | $\begin{array}{c} {\rm TrmD/3ief} \\ {\rm TrmD/1uaj}^a \\ {\rm TrmD/3ky7}^a \\ {\rm TrmD/1p9p}^a \\ {\rm TrmD/3knu}^a \end{array}$ | Bartonella Haemophilus Staphylococcus E.coli Phagocyto- philum | | | U2
snRNP | PHF5/2k0a | Saccharomyces | | DUF | $\begin{array}{c} 2168/3 \text{dcm}[\text{n}] \\ 358/2 \text{qwv}^a[\text{n}] \\ 358/2 \text{qmm} \\ 358/3 \text{aia}[\text{n}] \\ 171/1 \text{k3r} \end{array}$ | Thermotoga Vibrio cholerae Archaeoglobus Methano- caldococcus Methano- thermobacter | | | designed
protein | -/3mlg | Helicobacter | | SAM
syn-
thetase | -/2obv | Human | | | OTCace | AOTCase/1yh1
AOTCase/1js1 | Xanthomonas
Bacteroides | | SAM
syn-
thetase | $-/1 \text{fug}$ $-/1 \text{qm} 4^a$ $-/3 \text{rv} 2^a [\text{n}]$ $-/3 \text{iml}^a$ | E.coli Rat Mycobacterium pseudomallei group | ## References [1] Finn RD, et al (2006) Pfam: clans, web tools and services. Nucleic Acids Res. 34: D247-D251.