
Supporting Information
Verho et al. 10.1073/pnas.1204328109
SI Text
Energetics of the Micro-Cassie to Nano-Cassie Transition. Calculating
the free energy difference of the micro-Cassie and nano-Cassie
states is no different from calculating the Cassie-Wenzel transi-
tion energy for a single level topography, except that the equili-
brium (Cassie-Baxter) contact angle of the nanofilaments has to
be taken as the Young’s contact angle of the microposts. The free
energy change during the transition is

ΔG ¼ ðγsl − γsÞΔAsl þ γΔAl; [S1]

where ΔAsl is the increase of solid-liquid contact area and ΔAl is
the change of liquid-air interfacial area. γ, γs and γsl are the li-
quid-air, solid-air and liquid-solid interfacial tensions, respec-
tively. Using Ab as the area of the bottom in a unit cell and
2πrph as the area of the post sidewalls, we arrive at, using the
Young’s equation cos θY ¼ ðγs − γslÞ∕γ,

ΔG ¼ γð− cos θY ðAb þ 2πrphÞ −AbÞ: [S2]

The micro-Cassie state is energetically favorable if ΔG > 0.
This is the case if

cos θY < −
Ab

Ab þ 2πrph
: [S3]

For the micropattern discussed in this study, with a post height of
5 μm, the inequality is satisfied with θY larger than 132°. The equi-
librium contact angle of the nanofilament coating is clearly larger
than this, which implies that the micro-Cassie is the lower en-
ergy state.

Micro-Cassie to Nano-Cassie Transition. By a force balance consid-
eration, we can calculate the critical Laplace pressure Δpc for the
micro-Cassie to nano-Cassie transition. The transition occurs
when the meniscus depins from the edges of the posts and moves
toward the bottom (see Fig. S1A). We proceed under the assump-
tion that the shape of the meniscus around each post is
approximately identical across the area under the water jet, which
is reasonable because the diameter of the water jet is much larger
than the size scale of the micropattern. The downward force per
unit cell exerted on the meniscus by the Laplace pressure is

Flp ¼ AbΔp; [S4]

where Δp is the Laplace pressure. The balancing upward force
caused by surface tension at the edges of the posts has the value

Fγ ¼ −2πrpγ cos θ; [S5]

where θ is the contact angle that the meniscus makes with the
sidewall of the post. In equilibrium Fγ ¼ Flp. The forces are lar-
gest when θ equals the advancing contact angle of the sidewalls θA
(the advancing contact angle of the nanofilament coating). The
Laplace pressure is then

Δpc ¼ −
2πrp
Ab

γ cos θA: [S6]

The advancing contact angle of the nanofilament coating is
roughly 170°, which gives Δpc ¼ 6.9 kPa. For comparison, for

single level topography with a fluorinated coating with an advan-
cing angle of 120° one gets Δpc ¼ 3.5 kPa.

Axisymmetric Meniscus Shape. Consider the microscopic meniscus
on the sidewall of a micropost shown in Fig. S1B. Assuming
cylindrical symmetry, we write the vertical force balance for
the part of the meniscus indicated in the figure. The surface ten-
sion on the contact line acts to pull the meniscus upwards, while
the Laplace pressure Δp and the surface tension at r tend to push
the meniscus toward the bottom. The force balance reads

πðr2 − r2p ÞΔpþ 2πrpγ cos θ þ 2πrγ sinα ¼ 0; [S7]

where rp is the post radius and γ is the surface tension. The sine of
α can be expressed in terms of the derivative dz∕dr as

sinα ¼
�
1þ 1

ðdz∕drÞ2
�

−1
2

: [S8]

Inserting [S8] into [S7] yields

dz
dr

¼ −
��

r

rp cos θ þ Δp
2γ ðr2 − r2p Þ

�
2

− 1

�
−1
: [S9]

This result will be used below. In addition, we remark that this
equation can also be used to calculate approximate shapes of the
meniscus close to the micro-Cassie to nano-Cassie transition,
although in reality the shape will not be perfectly axisymmetric.

Air Pockets at the Bases of the Posts.During a Cassie-Wenzel tran-
sition, the water immediately wets the bottom of the micropattern
once it makes contact with it. However, in the case of two level
topography (micro-Cassie/nano-Cassie transition) the bottom
and the sidewalls are coated with superhydrophobic nanofila-
ments which have a very high advancing contact angle. In this
case, there remain ring-shaped air pockets around the bases of
the posts (a micrograph is shown in Fig. S2).

Fig. S1C depicts the situation. After the transition to nano-
Cassie state, while the pressure is still on, the contact angle at the
post sidewall and at the bottom equals θA. Applying Eq. S7 with
α ¼ θA and θ ¼ θA we get

r ¼ γ
Δp

�
− sin θA þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2 θA −

rpΔp
γ

�
2 cos θA −

rpΔp
γ

�s �
;

[S10]

which gives the width of the air pocket as r − rp. For Δp ¼ 7 kPa,
i.e., just enough to cause a transition to nano-Cassie state, the
width of the air pockets would be 4.6 μm (with rp ¼ 5 μm and
θA ¼ 170°). We can thus see that a larger pressure is needed
to wet most of the bottom (Fig. S1D shows the shape of the air
pocket with Δp ¼ 10 kPa). The pocket width always has a finite
value with anyΔp, so at least in theory there always remains an air
pocket. On the other hand, we can see from Eq. S7 that withΔp ≥
0 one must have cos θ < − sin θ (i.e., θA < 135°) for an air pocket
to exist. Therefore air pockets will not be found on single level
topographies.

When Laplace pressure is removed, the air pocket assumes a
zero curvature shape (see Fig. S1D for an example). The receding
contact angle θR of the nanocoating dictates the minimum width
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the pocket must have in the final state. Using [S7] with Δp ¼ 0,
we find

rmin ¼ −
cos θR
sin θR

rp: [S11]

If rmin is large enough, the air pockets of adjacent posts coalesce
and the nano-Cassie state becomes unstable. This will happen if

cos θR ≤ −
�

r2p
ðL∕2Þ2 þ 1

�
−1
2

; [S12]

where L is the pitch of the micropattern. For the geometry used
in this study we find that the air pockets coalesce for receding
angles more than 153.4°. In other words, too hydrophobic a na-
nopattern leads to an unstable nano-Cassie state.

Negative Laplace Pressure and Reverse Transition. When a negative
Laplace pressure is produced by suction, the air pockets at the
bases of the posts begin to expand, governed by the magnitude
of Δp and θR. An example shape is shown in Fig. S1D. The width
of the air pocket is determined by equation similar to [S10]:

r ¼ γ
Δp

�
− sin θR �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2 θR −

rpΔp
γ

�
2 cos θR −

rpΔp
γ

�s �
:

[S13]

Of the two solutions the one corresponding to a minus sign can be
deemed unphysical because with Δp → 0− we would have r → ∞.
The physical solution (corresponding to plus sign) is consistent
with [S11] with Δp ¼ 0 and increases with decreasing pressure.
However, a negative enough pressure renders the determinant
(expression under square root) negative, restricting the maximum
size of the air pocket.

With a negative Δp, the air pocket can be destabilized by two
ways. First, the determinant in Eq. S13 may become negative im-
plying that no stable solution exist. This occurs with pressures
lower than

Δpc;1 ¼
γ
rp

�
cos θR −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 cos2 θR − 1

q �
: [S14]

However, if the air pockets grow large enough to coalesce before
Δpc;1 is reached, they become unstable at a pressure less negative
than Δpc;1. Depending on θR, this will happen if the radius cor-
responding to Δpc;1 is larger than L∕2. The receding angle value
θ�
R for which r ¼ L∕2 at Δpc;1 is given by the equation

sin θ�
R ¼ L∕2

rp

�
cos θ�

R −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 cos θ�

R − 1
p �

: [S15]

With θR > θ�
R, the air pockets will coalesce at the Laplace pres-

sure

Δpc;2 ¼ −
2γ
rp

L∕2
rp

sin θR þ cos θR�
L∕2
rp

�
2

− 1

: [S16]

The actual critical pressure for the nano-Cassie to micro-Cas-
sie transition can thus be written as

Δpc ¼
�
Δpc;1 if θR < θ�

R
Δpc;2 if θR > θ�

R
[S17]

Δpc depends strongly on θR and obviously goes to zero when
equality in [S12] applies. In this study, Δpc ranges between
−5.0 kPa and −1.3 kPa (corresponding to θR ¼ 145� 5°).

Fig. S1. Microscopic meniscus shape. (A) Deformation of the meniscus under Laplace pressure. The surface tension counters the force caused by pressure. (B)
Schematic representation of Eq. S7 in SI Text. (C) An air pocket at the base of a post. (D) Air pocket shapes calculated by integrating Eq. S9. From Left to Right:
Δp ¼ 10 kPa, the state after the water has been pushed between the posts by pressure (θA ¼ 170 °); Δp ¼ 0, the pressure has been released; Δp ¼ −3 kPa,
negative pressure is generated by suction (θR ¼ 145°).
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nano-Cassie

micro-Cassie

Fig. S2. An optical micrograph of a micro-Cassie/nano-Cassie boundary. The sample is tilted by 22° so that horizontal water-air interfaces do not reflect
incident light to the objective. Consequently interfaces with a nonhorizontal slope appear brightest. Due to this, the air pockets at the bases of the posts
are shown clearly. It is also obvious that the nano-Cassie region is much brighter overall due reflections from the interfaces between the air pockets and water.
Because of the tilt and the shallow depth of field of the objective, only one row of posts is in focus in the image.

Fig. S3. Light scattering contrast. Solid lines: the light scattering intensity ratio Inano-Cassie∕Imicro-Cassie as a function of wavelength (blue curve measured with a
tungsten light source, green curve measured with a mercury-vapor light source). Dotted line: eye sensitivity (photopic function, source: http://www.cvrl.org/
lumindex.htm). In the range where eye is sensitive the nano-Cassie state scatters 8–14 times more than the micro-Cassie state.

Fig. S4. Original confocal microscopy data without noise removal or contrast adjustment. Images were taken every 1 μm, but only every other image is shown
here to conserve space. Conventional reflectivity scan is shown on the Left, while fluorescence signal from nanoparticles is shown in the Right.
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