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1. Estimation of the effective interaction between a single
acrylamide monomer and a silica colloid surface

A single acrylamide monomer of size b interacts with a silica colloid of
diameter σ via van der Waals (vdW) forces. Assuming b� σ, the problem
reduces to the interaction between a single acrylamide molecule and a flat
silica surface, both immersed in water [1]

(1) V single
mono (z) = −Ab

3

3z3

where z is the distance between the surface of the colloid and the monomer.
A ≈ 10−20J is the Hamaker constant that depends on the relative dielectric
constant of silica (εs), acrylamide (εA) and water (εw) according to the
relation [1]

(2) A ∝ (εA − εw) (εs − εw)

(εA + εw) (εs + εw)
.

If we consider a single acrylamide monomer immersed in a solution of identi-
cal monomers, εw must be replaced with an effective dielectric constant that
depends on the volume fraction f of acrylamide monomers ε̃w = fεA + (1−
f)εw. For the case f → 1 (high monomer density) A ∝ (εA−εw)(1−f)→ 0,
thus the vdW interaction would be screened in dense acrylamide solutions.
When a polyacrylamide polymer is adsorbed onto the colloid per effect of
vdW, a dense layer of monomer will accumulate in contact with the colloid.
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2 SUPPLEMENTARY INFORMATION

The vdW forces will thus be screened for all the monomers except for those
in contact with colloid surface and can be modeled as:

(3) Vz =


+∞ if z < 0

−δ kBT if 0 ≤ z < d

0 if z ≥ δ
where −δ kBT and d are the energy and the depth of the effective monomer-
wall interaction and are simply related by

(4) − δ kBT =
Ab3

3d3
.

d should be taken as the distance between the silica wall and an adsorbed
monomer in contact with it and A should be an appropriate Hamaker
constant. Both silica and acrylamide are hydrophilic, thus a layer of wa-
ter molecules of thickness h will always be present between an adsorbed
monomer and the silica. We can take A ≈ 10−20 J, as for the silica–water–
acrylamide system and d ≈ b/2 + h.
Knowing that b ≈ 0.5 nm and h ≈ 0.5− 1 nm [2] we have δ ≈ 0.1 (assuming
h = 0.75 nm).

2. Force between two colloidal particles partially embedded
in a polymer network

In this derivation, initially we follow closely references [3, 4]. Consider a
binary mixture of big hard spheres (species 1) of diameter σ that we identify
with the colloids and small ones (species 2) that we identify with the polymer
blobs. The interaction potential between the two species is:

(5) Vbc(r) =


+∞ if r ≤ σbc
−ε if σbc < r ≤ λσbc
0 if r > λσbc

In relation to our model, we have σbc = RF/2 + ξads/4 and λσbc = RF/2 +
ξads/2 = σbc+ξads/4 (see main text for definitions). The force f(R) between
two big spheres with center–to–center distance R can be written as:

(6) f(R) = −∂ϕ11

∂R
− ∂F2

∂R
= −∂ϕ11

∂R
+

1

βZ2

∂Z2

∂R

where ϕ11 is the interaction potential between species 1 particles, i.e. hard
sphere repulsion, F2 is the free energy of species 2 particles, Z2 is the corre-
sponding partition function and β = 1/kBT . We can write:

(7)
∂Z2

∂R
= −

∫
∂

∂R

(
1− e−βV (r;R)

)
eβV (r;R)ρ(r)dr

where V (r;R) (corresponding to Vbcc in the main text; here we use shortened
notation) is the potential landscape for a particle of species 2 due to the
presence of the two particles of species 1 and ρ(r) is the density of species 2
spheres.
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Figure 1. Scheme of the geometry of the problem

Using Supplementary equation 5, V (r;R) = Vbc(|r|) + Vbc(|r −R|) can be
written as:

(8) V (r;R) =


∞ if r < σbc or |r−R| < σbc

−ε if σbc ≤ r < λσbc xor σbc ≤ |r−R| < λσbc

−2ε if σbc ≤ r < λσbc and σbc ≤ |r−R| < λσbc

0 if r ≥ λσbc and |r−R| ≥ λσbc
And the corresponding Meyer function can be encoded using the character-
istic function

(9) HD(r) =

{
1 if |r| < D

0 if |r| ≥ D

obtaining:

1− e−βV (r;R) =

=
(

1− eβε
)

[Hλσbc(r) + Hλσbc(r−R)] +(
2eβε − e2βε − 1

)
Hλσbc(r)Hλσbc(r−R)+(

e2βε − eβε
)

[Hσbc(r)Hλσbc(r−R) + Hλσbc(r)Hσbc(r−R)]−

e2βεHσbc(r)Hσbc(r−R)+

eβε [Hσbc(r) + Hσbc(r−R)]

(10)

Using Supplementary equations 6, 7 and 10 we can express:
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∂Z2

∂R
=

−
(

1− eβε
)∫ R

R
· r−R

|r−R|
δ (|r−R| − λσbc) e−βV (r;R)ρ(r)Z2dr−(

2eβε − e2βε − 1
)∫ R

R
· r−R

|r−R|
Hλσbc(r)δ (|r−R| − λσbc) e−βV (r;R)ρ(r)Z2dr−(

e2βε − eβε
)∫ R

R
· r−R

|r−R|
Hσbc(r)δ (|r−R| − λσbc) e−βV (r;R)ρ(r)Z2dr+(

e2βε − eβε
)∫ R

R
· r−R

|r−R|
Hλσbc(r)δ (|r−R| − σbc) e−βV (r;R)ρ(r)Z2dr

e2βε
∫

R

R
· r−R

|r−R|
Hσbc(r)δ (|r−R| − σbc) e−βV (r;R)ρ(r)Z2dr+

eβε
∫

R

R
· r−R

|r−R|
δ (|r−R| − σbc) e−βV (r;R)ρ(r)Z2dr

(11)

To solve the above integrals we first perform the change of variable s = r−R,
than introduce spherical coordinates with cos θ = R · s/Rs.
The first and the sixt integrals can be solved analogously. The first gives:

∫
R

R
·s
s
δ (s− λσbc) e−βV (s+R)ρ (s + R) Z2ds =∫ ∞
0

ds

∫ π

0
dθ

∫ π

−π
dφ

R

R
· s
s
δ (s− λσbc) eβV (s+R)×

ρ(s + R)Z2s
2 sin θ =

λσ2bc

∫ π

0
dθ

∫ π

−π
dφ cos θ sin θeβV (Sλ)ρ(Sλ)Z2

(12)

The second and the fourth integrals are again similar. The fourth gives:

∫
Hλσbc

R

R
· r−R

|r− R|
δ (|r−R| − σbc) eβV (r;R)ρ(r)Z2dr =

σ2bc

∫ π

0
dθ

∫ π

−π
dφHλσbc(S) cos θ sin θeβV (S)ρ(S)Z2

(13)

The third and the fifth integrals are identically zero.
The vectors S and Sλ with |S| = σbc and |Sλ| = λσbc are shown in Supple-
mentary Figure 1.
Following reference [4] we can account for the H functions by introducing
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the densities:

1ρ(Sλ) =

{
ρ(Sλ) if 0 ≤ θ <1 θλσbc
0 otherwise

2ρ(Sλ) =

{
ρ(Sλ) if 1θλσbc ≤ θ <2 θλσbc
0 otherwise

1ρ(S) =

{
ρ(S) if 0 ≤ θ <1 θσbc
0 otherwise

2ρ(S) =

{
ρ(S) if 1θσbc ≤ θ <2 θσbc
0 otherwise

(14)

where

1θλσbc = arccos

(
R2

2λσbcR

)
2θλσbc = arccos

(
λ2σ2bc −R2 − σ2bc

−2σbcR

)
1θσbc = arccos

(
σ2bc −R2 − λσ2bc
−2λσbcR

)
2θσbc = arccos

(
R2

2σbcR

)
(15)

From this point, our derivation differs from reference [4] because we need to
take into account partial penetration of the colloid. In our case, ρ(S) and
ρ(Sλ) have no azimuthal symmetry so the integrations in φ are not trivial.
As shown in Supplementary Figure 1, we define the angles:

0θλσbc = arccos

(
h

λσbc

)
+
π

2
(16)

0θσbc = arccos

(
h

σbc

)
+
π

2
(17)

and redefine the densities appearing in the integrals above as:

ρ (Sλ) =


1ρ(Sλ) +2 ρ(Sλ) if θ ≤ 0θλσbc and |φ| ≤ arcsin

[√
1−

(
sin0 θλσbc

sin θ

)2]
0 otherwise

ρ (S) =


1ρ(S) +2 ρ(S) if θ ≤ 0θσbc and |φ| ≤ arcsin

[√
1−

(
sin0 θσbc

sin θ

)2]
0 otherwise

(18)
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f(R) can be put in the form:

f(R) = − 1

β
σ2bc

[
I(R) + λ2(1− eβε)Iλ(R)

]
I(R) =

∫ π

0
dθ

∫ π

−π
dφρ(S;R) cos θ sin θ

Iλ(R) =

∫ π

0
dθ

∫ π

−π
dφρ(Sλ;R) cos θ sin θ

(19)

Finally, using Supplementary equations 14 and 18, the integrals I(R) and
Iλ(R) can be expressed as:

I(R) =

∫ 0θσbc

π−0θσbc

arcsin

√1−
(

sin0 θσbc
sin θ

)2
 ρ̃(S;R) cos θ sin θdθ

Iλ(R) =

∫ 0θλσbc

π−0θλσbc

arcsin

√1−
(

sin0 θλσbc
sin θ

)2
 ρ̃(Sλ;R) cos θ sin θdθ

(20)

where we renamed

ρ̃ (Sλ) =1 ρ(Sλ) +2 ρ(Sλ)

ρ̃ (S) =1 ρ(S) +2 ρ(S)
(21)

2.1. Analytical expression for the force in the ideal gas approxi-
mation. In the ideal gas approximation:

(22) ρ(r;R) = ρe−βV (r;R)

We can use Supplementary equation 8 to compute ρ̃(S) and ρ̃(Sλ):

ρ̃(Sλ) =


ρ if 0 ≤ θ <1 θλσbc
ρeβε12 if 1θλσbc ≤ θ <2 θλσbc
0 otherwise

ρ̃(S) =


ρeβε12 if 0 ≤ θ <1 θσbc
ρe2βε12 if 1θσbc ≤ θ <2 θσbc
0 otherwise

(23)

Integrations in Supplementary equation 20 can be solved analytically:∫
arcsin

√1−
(

sin0 θ

sin θ

)2
 cos θ sin θdθ =

1

2
sin0 θ sin θ

 sin θ

sin0 θ
arccos

(
sin0 θ

sin θ

)
−

√
1−

(
sin0 θ

sin θ

) = χ(θ;0 θ).

(24)
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We define the following set of threshold distances:

π =1 θλσbc → R = R1 = 2σbc

π =2 θλσbc =1 θσbc → R = R2 = σbc + λσbc

π =2 θσbc → R = R3 = 2λσbc
0θλσbc =1 θλσbc → R =1 R0

λσbc
= −2λσbc cos(0θλσbc)

0θλσbc =2 θλσbc → R =2 R0
λσbc

= −σbc cos θ0

[
1 +

√
1− 1− λ2

cos2(0θλσbc)

]

0θσbc =1 θσbc → R =1 R0
σbc

= −λσbc cos θ0

[
1 +

√
1− λ2 − 1

λ2 cos2(0θσbc)

]
0θσbc =2 θσbc → R =2 R0

σbc
= −2σbc cos(0θσbc)

(25)

Using Supplementary equations 23 and 24, I(R) and Iλ(R) can be calcu-
lated in a piece-wise fashion:

for R1 < R ≤ R2 and R ≤2 R0
σbc

I(R) = ρeβε12
[(

1− eβε12
)
χ(1θσbc ;

0 θσbc) + eβε12χ(2θσbc ;
0 θσbc)− χ

(
π −0 θσbc ;

0 θσbc
)]

for (R1 < R ≤ R2 and 2R0
σbc

< R ≤1 R0
σbc

) or (R2 < R ≤ R3 and R ≤1 R0
σbc

)

I(R) = ρeβε12
(

1− eβε12
) [
χ(1θσbc ;

0 θσbc)− χ
(
π −0 θσbc ;

0 θσbc
)]

for (σ < R ≤ R1) or (R1 < R ≤ R2 and R >1 R0
σbc

) or (R > R2)

I(R) = 0

(26)

for σ < R ≤ R2 and R ≤2 R0
λσbc

Iλ(R) = ρ
[(

1− eβε12
)
χ(1θλσbc ; θλσbc) + eβε12χ(2θλσbc ; θλσbc)− χ (π − θλσbc ; θλσbc)

]
for (σ < R ≤ R2 and 2R0

λσbc
< R ≤1 R0

λσbc
) or (R2 < R ≤ R3 and R ≤2 R0

λσbc
)

Iλ(R) = ρ
(

1− eβε12
) [
χ(1θλσbc ; θλσbc)− χ(2θλσbc ; θλσbc)θ

]
for (σ < R ≤ R2 and R >1 R0

λσbc
) or (R2 < R ≤ R3 and R >2 R0

λσbc
) or (R > R3)

Iλ(R) = 0

(27)
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2.2. Analytical expression for the force using correction for blob-
blob repulsion. We substitute Supplementary equation 22 with Supple-
mentary equation 39, derived in the following section. To modify the colloid-
colloid force we need replace Supplementary equation 23 with:

ρ̃(Sλ) =


ρ0 if 0 ≤ θ <1 θλσbc
ρ1 if 1θλσbc ≤ θ <2 θλσbc
0 otherwise

ρ̃(S) =


ρ1 0 ≤ θ <1 θσbc
ρ2 if 1θσbc ≤ θ <2 θσbc
0 otherwise

(28)

where

ρ1 =
ρ0e

βε12

1 + vρ0eβε12

ρ2 =
ρ0e

2βε12

1 + vρ0e2βε12

(29)

The integrals Iλ(R) and I(R) have now the form:

for R1 < R ≤ R2 and R ≤2 R0
σbc

I(R) = (ρ1 − ρ2)χ(1θσbc ;
0 θσbc) + ρ2χ(2θσbc ;

0 θσbc)− ρ1χ
(
π −0 θσbc ;

0 θσbc
)

for (R1 < R ≤ R2 and 2R0
σbc

< R ≤1 R0
σbc

) or (R2 < R ≤ R3 and R ≤1 R0
σbc

)

I(R) = (ρ1 − ρ2)
[
χ(1θσbc ;

0 θσbc)− χ
(
π −0 θσbc ;

0 θσbc
)]

for (σ < R ≤ R1) or (R1 < R ≤ R2 and R >1 R0
σbc

) or (R > R2)

I(R) = 0

(30)

for σ < R ≤ R2 and R ≤2 R0
λσbc

Iλ(R) = (ρ0 − ρ1)χ(1θλσbc ; θλσbc) + ρ1χ(2θλσbc ; θλσbc)− ρ0χ (π − θλσbc ; θλσbc)
for (σ < R ≤ R2 and 2R0

λσbc
< R ≤1 R0

λσbc
) or (R2 < R ≤ R3 and R ≤2 R0

λσbc
)

Iλ(R) (ρ0 − ρ1)
[
χ(1θλσbc ; θλσbc)− χ(2θλσbc ; θλσbc)θ

]
for (σ < R ≤ R2 and R >1 R0

λσbc
) or (R2 < R ≤ R3 and R >2 R0

λσbc
) or (R > R3)

Iλ(R) = 0

(31)
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3. Derivation of the real-gas density distribution of blobs

The osmotic pressure Π (ρ(r)) of Brownian spheres is related to the ex-
ternal force field F(r) by the relation [5]:

(32) F(r) =
1

ρ(r)
∇rΠ (ρ(r)))

In the first order expansion in terms of density, the osmotic pressure is given
by [5]:

(33)
dΠ

dρ
=

1

β
(1 + vρ) .

Integrating we get:

(34) Π(ρ) =
1

β

(
ρ+

1

2
vρ2
)

+A

Where v is the volume of the spheres and A is a constant.
Substituting Supplementary equation 34 in Supplementary equation 32 we
have:

F = −∇rV =
1

β

1

ρ
(vρ∇rρ+∇ρ) =

1

β
∇r (vρ+ log ρ) .

(35)

Integrating:

(36) − V =
1

β
(vρ+ log ρ) +B.

Which gives:

(37) ρ = Ce−βV e−vρ

In the limit vρ� 1 we can expand the exponential at the right hand side:

ρ =Ce−βV (1− vρ)→

ρ =
Ce−βV

1 + Cve−βV

(38)

In the limit of ideal gas (i.e. v = 0) we should recover Supplementary
equation 22, thus C = ρ0.
The final result is then:

(39) ρ(r;R) =
ρ0e
−βV (r;R)

1 + ρ0ve−βV (r;R)

The reader should note that the osmotic pressure defined here does not cor-
respond to the monomer osmotic pressure. In fact, the osmotic pressure of
monomers in a self avoid random walk (SAWR, describing a swollen poly-
mer chain in good solvent) would not follow a quadratic dependence on the
monomer density but a power law with fractional exponent [6]. However, we
have already made use of correct scaling laws of SAWRs when defining the
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size and the amplitude of blob–blob repulsion. Once the polymer–network
has been mapped onto a network of blobs, they can be treated as generic
Brownian particles.

4. Repulsive regimes in the potential of mean force

Our theory recovers regimes of net repulsion in the polymer–network me-
diated potential of mean force between colloidal particles. In general, this
occurs when the density of the polymer coronae surrounding the colloids is
high–enough that the disjoining osmotic pressure or steric repulsion between
them prevents their overlap, and therefore the formation of the bridge. A
way to reach this regime consists in simply increasing the blob density ρ.
As demonstrated in Supplementary Figure 2, upon increasing ρ, we first see
a short–range repulsion coexisting with a slightly longer range attraction.
Then the potential becomes fully repulsive and strong enough to prevent
the colloids to come in direct contact.
Analogous effect can be obtained by slightly increasing δ, and consequently
the blob–colloid attraction which ultimately causes an increased blob den-
sity in the corona surrounding the colloids.
Also, changing the scaling behavior of the chains, for example to account for
solvents of different quality, can give rise to net repulsive regimes. Indeed,
if the ideal chain scaling is used, one needs to redefine the blob dimension
RF = bN1/2, as well as the range and the depth of the blob–colloid inter-
action ξads = b/δ and εads = −kBNTδ2. εads turns out to be significantly
bigger compared with what calculated for SARW (10 kBT for b = 0.005
N = 1000 and δ = 0.1 compared with 3 kBT ). This leads to a purely re-
pulsive potential of mean force due to the saturation of the surface of the
colloids.

5. Monte Carlo simulations

5.1. Summary of the model. The polymer gel is modeled as a network
of M blobs. The overall energy of the network is given by

(40) Unetwork ({r}) =

M∑
i=1

M∑
j=i+1

[Vbb(rij) + CijVsp(rij)]

where

(41) Cij =

{
1 for nearest neighbors

0 otherwise.

while Vbb(r) and Vsp(r) are reported in equations [1] and [2] of the main
text. With {r} we indicate the set of blobs coordinates.
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Figure 2. Analytical potential of potential of mean
force between two colloids fully embedded in the net-
work at increasing values of blobs density. b = 0.005,
δ = 0.1, N = 1000, ρ0 = 25/σ3.

Mc colloids of diameter σ interact one to each other with hard sphere po-
tential

(42) Vhs(R) =

{
+∞ if R < σ

0 if R > σ

The colloids also interact with the blobs with energy Vbc(r) (Supplementary
equation 5) . Finally, a gravity force F = −F ẑ is acting on the colloids. The
overall energy of the colloids is thus:
(43)

Ucolloids({R}, {r}) =

Mc∑
I=1

 Mc∑
J=I+1

Vhs(RIJ) +

M∑
j=1

Vbc(|RI − rj |)− FZI


where with {R} we indicated the set of colloids coordinates.
The total energy of the system to be used in the simulations is:

(44) U({R}, {r}) = Unetwork ({r}) + Ucolloids({R}, {r}).
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5.2. Details of the simulations. We simulated the system within the
NVT ensemble using the Metropolis Monte Carlo algorithm. Periodic bound-
ary conditions were used in the directions x and y parallel to the network
substrate with periodicity L. No periodic boundary conditions where used
in the direction z normal to the network substrate. Blobs were initially
arranged in a cubic lattice with cell parameter RF. Consequently, the co-
ordination of blobs in the bulk of the network was 6 while coordination of
those at the upper and lower interface was 5. The bottom layer of blobs
was confined around the plane z = 0 by the potential V (z) = kBT (r/RF)5/2

to avoid the folding of the network, but, at the same time allowing some
flexibility in to mimic a thicker substrate.
The thickness of the network in the z direction was of 6 of layers of blobs.
The number of blobs in the directions x and y was chosen in order to have
a box size L > 5σ.
For single colloid simulations, used to evaluate colloid penetration l and
bulk density of the network ρ0, the colloid was allowed to fluctuate in all
the directions. The distribution of the blobs was sampled using a 3D grid
of mesh size 0.05σ moving with the reference frame of the colloid.
For two-colloids simulations, used to measure the pair potentials, MC moves
were performed changing the distance R between the colloids and their
height z. Using an Umbrella Sampling technique, the range of R was di-
vided into widows of width 0.1σ with an overlap between adjacent windows
of 0.05σ. R was sampled within each window and a histogram H(R) for
the whole range of distances was reconstructed using the Self-Consistent
Histogram Method [7]. The pair potentials were then computed as V (R) =
−kBT logH(R). To sample the distribution of blobs, the two colloids were
held at fixed distance R but still allowed to fluctuate in z. The sampling
was performed using the same grid as for the case of single colloid.
We define a MC cycle as a number of attempted moves (steps) equal to
M+Mcoll where M is the number of blobs and Mcoll is a tunable integer. At
every step, the probability of attempting to move a blob was M/(M+Mcoll)
whears the probability of attempting to move a colloid wasMcoll/(M+Mcoll).
We tuned Mcoll in order to reach an optimal ratio between colloid and blob
moves. The sampling frequency was once every 500 MC cycles. In Supple-
mentary Table 1 we report details about simulations used to compute the
curves in Figure 3 of the main body of the paper.
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