Supporting Information

Schmidt et al. 10.1073/pnas.1204700109

SI Text

Supplemental Methods. CHO cells stably expressing Kv2.1 were used for electrophysiology. Currents were recorded in the whole-cell mode and in outside-out patch mode. For both, bath solution contained (mM): 135 NaCl, 15 KCl, 3 MgCl2, 1 CaCl2, 5 Glucose, 10 Hepes-NaOH (pH 7.3, 310 mOsm/kg); and the pipette solution contained (mM): 150 KCl, 3 MgCl2, 5 EGTA, 10 Hepes-KOH (pH 7.3, 310 mOsm/kg). Electrodes were drawn

from borosilicate patch glass (VWR) and polished (MF-83, Narishige Co.) to a resistance of 2–4 M Ω . Analog signals were filtered (1 kHz) using the built-in 4-pole Bessel filter of an Axopatch 200B patch clamp amplifier (Molecular Devices) in patchmode, digitized at 10 kHz (Digidata 1440A, Molecular Devices) and stored on a computer hard disk.

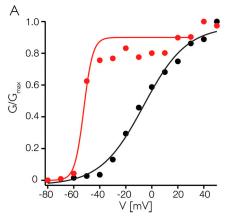
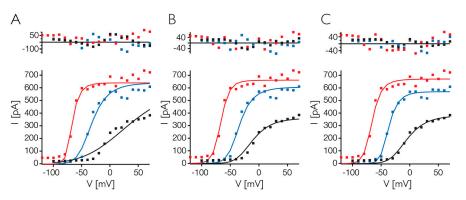



Fig. S1. The effect of membrane configuration. Kv2.1 in outside-out patch (red) or whole-cell configuration (black) recorded from the same CHO cell. Boltzmann functions (solid lines) fit data with V_m (mV) and z (q_e): -52.3 ± 1.42, 7.52 ± 2.7 (outside-out patch), and -6.32 ± 2, 1.5 ± 0.1 (whole cell).

Fig. S2. Mechanosensitivity can be explained by varying L, but not K(V). Kv2.1 channels in the same on-cell patch with 0 mmHg (black), 5 mmHg (blue) and 15 mmHg (red) of transient pressure applied. Solid lines are fits to Eq. 1 (see main text) using the relationship $\langle I \rangle = iNP_0$, with the following constraints in place: (a) V_m and z independently fit for each pressure value, L constrained to be the same for all pressure values. (b) V_m and z constrained to be the same for all pressure values. L independently fit for each pressure value. (c) V_m , z and L independently fit for each pressure values are plotted above each panel. χ^2 are 95494, 57871, and 45325 for (a-c) respectively.

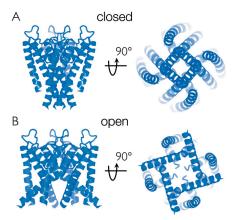
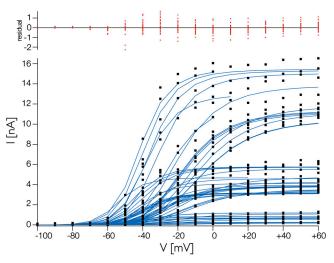
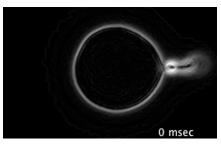




Fig. S3. A structural description. A) Pore domain of the KcsA structure (PDB code: 1K4C) in a closed conformation. B) Pore domain of the KcsA structure in an open conformation based on the MthK structure (PDB 1LNQ).

Fig. S4. Global Fit of all Paddle Chimera datasets. A, Global fit of 57 families of current extracted from 11 outside-out patches. Solid blue lines represent a fit of each family (black dots) to Eq. 1 with $\langle I \rangle = iNP_0$. Fitting residuals are graphed above (red dots). Fitting parameters are summarized in SI Table S1.

Movie S1. Lipid adheres to glass. Giant Unilamellar Vesicles (GUVs) formed with DOPC and Rhodamine-DOPE display rapid surface undulations when suspended in aqueous solution. When brought in contact with a fused borosilicate glass wand (t = 2440 msec) the surface undulations of the GUV cease, and lipids slowly run up the wand.

Movie S1 (MOV)

								-			
Global	Vm	-25 ± 0.5	[mV]								
Parameters	z	1.12 ± 0.02	[qe]								
Local											
Parameters			late-step equilibrium constant L					iN			
Patch 1	1.97	1.97	1.95	2.4	3.02	7.4	23.4	41.9	64.7	88.4	15675
	±0.1	±0.1	±0.1	±0.1	±0.1	±0.4	±1.8	±3.5	±5.7	±8	±87
Patch 2	4.5	13.74	12.4	15.3	23.7						4108
	±0.6	±2.5	±2.3	±2.9	±4.9						±90
Patch 3	3.1	9.8	50.5	445							4688
	±0.4	±1.5	±9.8	±99							±86
Patch 4	6	5.7	5.3	6	12.6	55.2					13215
	±0.4	±0.4	±0.4	±0.4	±1.1	±5.8					±155
Patch 5	7.1	82.4	261								821
	±5.5	±88	±296								±76
Patch 6	4.3	12.3	39.9	73.9							691
	±3.5	±12.7	±49	±94							±81
Patch 7	4.8	9.86	80.39								4171
	±0.7	±1.8	±19								±103
Patch 8	4.5	21.7	65	90	121						5806
	±0.4	±3	±10	±14	±20						±63
Patch 9	8.7	43	46.6	44.9							1210
	±4.7	±30	±32	±31							±73
Patch 10	23.3	27	46.4	57.8	64.4	54.7	69.4	81.7			3228
	±5.5	±6.5	±12	±15	±17	±14	±19	±22			±47
Patch 11	2.2	4.2	16.5	60.7	54.2						254
	±4.4	±9	±48	±206	±183						±78

Table S1. Global fitting parameters for tension scaling

PNAS PNAS