
Supporting Information

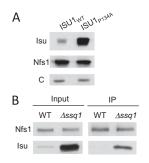

Song et al. 10.1073/pnas.1206945109

Fig. S1. Levels of Mrp20, a substrate of Pim1. Because Mrp20 is unstable only in the absence of functional mtDNA, indicated strains were rendered ρ -negative by culturing in rich media containing 2 μ g/mL of ethidium bromide for 4 d. Respiratory incompetent cells were then cultured in fresh media. Mitochondrial lysates were prepared and subjected to immunoblot analysis with Mrp20-specific antibodies or, as a loading control, Mge1-specific antibodies (c).

Fig. S2. Isu1-Myc migrates more slowly than Isu in SDS/PAGE. Cell lysates of $\Delta isu1\Delta isu2$ ISU1-Myc with either a deletion of SSQ1 ($\Delta ssq1$) or a WT copy of the gene (SSQ1) and harboring ISU1 on a plasmid were prepared. Proteins were separated by SDS/PAGE and subjected to immunoblot analysis with Isu-specific antibodies or, as a loading control, Mge1-specific antibodies (c). The asterisk indicates a likely partial degradation product of Isu1-Myc.

Fig. S3. Nfs1 levels. (*A*) Cell lysates of $\Delta isu1 \Delta isu2$ cells expressing WT lsu1 or lsu1_{P134A} were subjected to immunoblot analysis using lsu, Nfs1, and, as a control, Mge1-specific antibodies. (*B*) Lysates of mitochondria prepared from WT or $\Delta ssq1$ cells were subjected to immunoprecipitation (IP) using Nfs1-specific antibodies. Precipitated Nfs1 and lsu1 (IP) were detected by immunoblot analysis using specific antibodies, with 4% of mitochondrial lysate used as a loading control (Input). More complex was observed in $\Delta ssq1$ lysates, consistent with the presence of more Nfs1 than lsu.