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SI Text
Comparison Between Calculations Performed Over 400 ns (Five MD
Runs) and Over 80 ns (for each MD Run). The FEPs (Fig. 1 and
Fig. S2), the correlation coefficients R and RnðMÞ (Fig. 3 and
Fig. S9), and the dPCA analysis were performed by using a long
MD run of 400 ns built by joining the five MD runs of 80 ns de-
scribed in ref. 1 together. The FEPs computed for each run of
80 ns were similar to those computed over 400 ns (Fig. 1). For
example, the FEPs of MD run 1 is shown in Fig. S4. The FEPs
vary in general by several degrees, say approximately 10°, and the
largest activation barriers may vary typically by approximately
1 kT between each of five MD runs of 80 ns (1). The correlation
coefficients R between the side-chain and main-chain motions
were also computed for each MD run and averaged: the results
are similar to a calculation of R from the 400 ns MD run (com-
pare Fig. 3A and Fig. S8). The functions RnðMÞ (Fig. S5) were
also computed for the entire 400 ns MD run (Fig. S9). They are
similar to the functions RnðMÞ computed for each MD run of
80 ns of duration (compare Fig. S5 and S9, for example).

Calculation of the Pearson Correlation Coefficient R for the Dihedral
Angular Steps. The Pearson correlation coefficient R computed
between two functions xiðtÞ and yiðtÞ is given by (2)

R ¼ ∑
tmax

t¼t0
½ΔxiðtÞΔyiðtÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð∑
tmax

t 0¼t0
½Δxiðt 0Þ�2Þð∑

tmax

t 0 0¼t0
½Δyiðt 0 0Þ�2Þ

q ; [S1]

where ΔxiðtÞ ¼ xiðtÞ − hxii, ΔyiðtÞ ¼ yiðtÞ − hyii and tmax-t0 is the
time interval considered.

For the calculation of the correlation coefficient between the
steps, RnðMÞ, we used xiðtÞ ¼ Δγnðt;MÞ and yiðtÞ ¼ Δδnðt;MÞ.
The values of xiðtÞ and yiðtÞ were recorded every ps and the
averages hi were computed over the time duration tmax-t0 of
the joined five MD runs; i.e., 400 ns. For the calculation of
R between the trajectories of the CGDA, we cannot use xiðtÞ ¼
γnðtÞ and yiðtÞ ¼ δnðtÞ; i.e., the CGDAs computed for each MD
snapshot are defined in ½−π; π� (Fig. S1), and the average cannot
be computed correctly (for example, the simple average angle
between −π and þπ would give an angle of zero degrees). There-
fore, to define the time averages hi of the dihedral angles in
Eq. S1, we built two discrete time series Sγ and Sδ from the suc-
cessive dihedral angle displacements Δγ and Δδ, respectively, on
the unit circle (Fig. S1). For example, Sγð0Þ ≡ γð0Þ, Sγð1Þ ≡
Sγð0Þ þ Δγð1; 1Þ,…, SγðmÞ ≡ Sγðm − 1Þ þ Δγðm; 1Þ,…, SγðMÞ ≡
SγðM − 1Þ þ ΔγðM; 1Þ (see ref. 3). Use of the variable SγðtÞ and
SδðtÞ ensure that a jump from −π to π is of length zero and that
free diffusion on a circle corresponds to an exponent α ¼ 1 (3).
The calculation of R between the trajectories was performed with
Eq. S1 using xi ¼ SγðtÞ and yi ¼ SδðtÞ.

Calculation of the Pearson Correlation Coefficient R and Similarity
Index h for the FEPs. The correlation coefficient R between
the FEP was computed with Eq. S1 using xi ¼ ~V ðγÞ ¼
−kT ln½ ~PðγÞ� and yi ¼ ~V ðδÞ ¼ −kT ln½ ~PðδÞ�, where ~V and ~P are
the FEPs and the PDFs after alignments of their deepest mini-
mum and maximum, respectively (Fig. S2). The Boltzmann con-
stant is k, and the temperature is T. The similarity index h
between the FEPs was adapted from ref. 4 and defined by

h ¼
2∑

þπ

θ¼−π
½ ~Pðγ ¼ θÞ ~Pðδ ¼ θÞ�

ð∑
þπ

γ¼−π
½ ~PðγÞ�2Þ þ ð∑

þπ

δ¼−π
½ ~PðδÞ�2Þ : [S2]

The Dihedral Principal Component Analysis. We performed a dPCA
analysis of the CGDAs γn and δn over 400 ns (the five MD runs
were joined as explained in point 1). In short, dPCA consists of
diagonalizing the covariance matrix of the Cartesians compo-
nents X and Y of the 2-D vectors unðtÞ representing a dihedral
angle (Fig. S1), say unðtÞ ¼ fcos½γn�; sin½γn�g, computed from
an MD run (5). The eigenvalues λ of the covariance matrix
are ordered by decreasing value: λ1 > λ2 > …λm (m ¼ N-2 ¼ 43
angles γn), and each collective mode k is characterized by λκ and
by the corresponding eigenvector ek ¼ ½ek;2; ek;3;…ek;m� t where
ek;i ¼ ½ek;iðxÞ; ek;iðyÞ� is the amplitude of the displacement of
the vector ui in mode k. The contribution of a CGDA to a mode
is quantified by the so-called influence vk;i ≡ ½ek;iðxÞ�2 þ ½ek;iðyÞ�2
(5). The sum of the eigenvalues is equal to the total mean-square-
fluctuations of the vectors un, i.e., ∑m

i¼1 λi ¼ ∑N−2
n¼2 hu2

nðt 0Þit 0−
hunðt 0Þit 0 :hunðt 0Þit 0 where the averages are computed over all
times of the MD run. Therefore, λ1 is the eigenvalue of the mode
which contributes the most to the structural fluctuations of the
CGDAs γn in the MD run. The largest values of the influence
v1;n reveal the dihedral angles which contribute the most to the
fluctuations in this mode. In normal mode analysis, the eigenva-
lues of the covariance matrix of the Cartesians displacements are
proportional to the inverse of the square of the frequencies
of the normal modes. This is the reason why large values of
λn are named slow modes (6). The projection of the trajectory
on the eigenvector ek is named the principal component
(PCk). For example, PC1ðtÞ ¼ ∑N−2

n¼2 ½unðtÞ − huni�:e1;n. More
details can be found in refs. 5, 7, and 8. Each PCk is associated
with an FEP Vk corresponding to the projection of the FEL of
the protein along the collective coordinate PCk; i.e., Vk ¼
−kT ln½PðPCkÞ�, where PðPCkÞ is the PDF of the coordinate
PCk. We also computed the 2-D projections of the FEL,
V 1;2 ≡ −kT ln½PðPC1; PC2Þ�. The 1-D PðPCkÞ and 2-D PDFs
PðPCk; PClÞ were computed for each snapshot of the joined five
MD runs (400 ns). We found that the cosine contents (9) of PC1,
PC2 and PC3 were 0.01, 0.002, and 0.01, respectively. This
implies that the MD statistics is large enough to interpret the
FEP Vk correctly (9). In addition, we found that the FEPs V 1

and V 2 were the only multiple-minima Vk FEPs. This justifies
using only the two modes 1 and 2 as the minimal representation
of the FEL of VA3 (10, 11).

Relation Between the Pearson Correlation Coefficient and Anomalous
Diffusion. In the section Correlation between the CGDATrajectories
and Steps of the main text, we stated that the Pearson correlation
coefficient RnðMÞ was given by

RnðMÞ ¼ Cnð0;MÞM−ðαþα 0Þ∕2∕
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4DαDα 0 ;

p
[S3]

where the cross-correlation function Cnð0;MÞ was defined by

Cnð0;MÞ ¼ hΔγnðt 0;MÞΔδnðt 0;MÞit 0 [S4]

Eq. S3 can be deduced immediately from the definition of R
as follows. First, we found numerically that the displacements
of each dihedral angle after M ps, averaged over the entire
MD trajectory (all t 0) is null, i.e., hΔγnðt 0;MÞit 0 ¼ 0 and
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hΔδnðt 0;MÞit 0 ¼ 0, as the random walkers on the γn-circle and
δn-circle (Fig. S1) are doing the same number of forward and
backward steps on average. By using the definition of the corre-
lation coefficient (ref. 2 and Eq. S1), we have

RnðMÞ ¼ ∑
tmax

t¼t0
½Δγnðt;MÞΔδnðt;MÞ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð∑

tmax

t 0¼t0
½Δγnðt 0;MÞ�2Þð∑

tmax

t 0 0¼t0
½Δδnðt 0 0;MÞ�2Þ

q :

[S5]

By definition, the MSDs of the CG dihedral angles are exactly:

MSDγðn;MÞ ¼ 1

tmax − t0 ∑
tmax

t 0¼t0

½Δγnðt 0;MÞ�2; [S6]

MSDδðn;MÞ ¼ 1

tmax − t0 ∑
tmax

t 0¼t0

½Δδnðt 0;MÞ�2: [S7]

As we have proven that the RCFs of the CGDAs are stretched

exponentials in ref. 1 and here, we know (1) that the MSDs are
power-laws of time and are given (1) by:

MSDγðn;MÞ ¼ 2DαM α; [S8]

MSDδðn;MÞ ¼ 2Dα 0M α 0
; [S9]

where (α,Dα) and (α 0; Dα 0) are the exponents and diffusion con-
stants of the RCFs of the CGDAs γn and δn, respectively (Fig. 2 of
the main text). On the other hand, by definition, the cross-corre-
lation function between the steps Δγnðt 0;MÞ and Δδnðt 0 þ τ;MÞ
is

Cnðτ;MÞ ¼ ∑
tmax

t 0¼t0
½Δγnðt 0;MÞΔδnðt 0 þ τ;MÞ�

tmax − t0
: [S10]

Inserting Eqs. S8–S10 in Eq. S5, we deduce Eq. S3.
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Fig. S1. (A) Definitions of the coarse-grained dihedral angle (CGDA) γn constructed from four consecutive Cα atoms and of the CGDA δn built from two
consecutive Cα atoms and their respective Cβ atoms (for Gly residues, a pseudo-Cβ atom is defined as the position of its side chain H atom). The colors
are as follows: C (green), N (blue), O (red) and H (white). (B) Definition of the 2-D unit vector un for a dihedral angle θn and of the angular displacement
Δθn on the unit circle.
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Fig. S2. Effective FEP VðγnÞ (thick black lines) and VðδnÞ (thin black lines) computed from MD along the primary sequence (γn, and δn, n ¼ 2 to 44). The FEPs
were first computed from the concatenation of the five MD runs (Fig. 1 of the main text) and were aligned next on their deepest minimum. Residues n located
in a helix are in a black box and residues located in a β-sheet are in an orange box. For each residue n, the number in the inset is the value of the correlation
coefficient R and of the similarity index h computed between these aligned FEPs and VðγnÞ and VðδnÞ.

Fig. S3. Typical results for the RCFs T2 of the coarse-grained (CG) dihedral angles δn up to 1 ns (full lines) computed by using Eq. 1 of the main text fromMD of
the protein VA3. Results are shown forMD run 1. Results are presented for the three types of RCFs corresponding to three types of 1-D free-energy profiles (FEP)
(Fig. 1 of the main text and Fig. S4): a harmonic FEP (δ11), a wide single-minimum FEP (δ20) and a multiple-minima FEP (δ39). The RCFs computed fromMD were
fitted by stretched exponentials, expð−4DαtαÞ, up to 1 ns. The fits (dashed lines) and the RCFs computed from MD are hardly distinguishable.
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Fig. S4. Effective FEP VðγnÞ (thick black lines) and VðδnÞ (thin black lines) computed fromMD run 1 along the primary sequence (γn, n ¼ 2 to 44 and δn, n ¼ 1 to
45) compared to the NMR-derived structural data [blue diamonds (γn) and red diamonds (δn)] calculated from the different models of VA3 (PDB ID: 1ED0), and
to x-ray data (PDB ID: 1OKH) [blue square (γn) and orange square (δn)]. Residues n located in a helix are in a black box and residues located in a β-sheet are in an
orange box.

Fig. S5. Comparison of the evolution of the correlation coefficient RnðMÞ (lines and filled diamonds) between the displacements Δγnðt;MÞ and Δδnðt;MÞ, as
function of the logarithm of the numberM of steps, along the amino acid sequence of VA3. Results are shown forMD run 1. Each curve RnðMÞ for n ¼ 2 to 44, is
plotted between 0 and 1with a tickmark every 0.2. The correlation coefficient RnðMÞwas computed forM equals to 1, 10, 30, 100, 500, 1,000, 2,000, and 10,000.
The values of R computed between the time series γnðtÞ and δnðtÞ extracted fromMD run 1 are shown for comparison (circles) atM ¼ 10;000 and are generally
hardly discernable from the values of Rnð10;000Þ. The exponent β extracted from a fit of RnðMÞ to a power-law ½RnðMÞ ∼Mβ� up to 1 ns is given as the number in
the inset for each value of n for which the fit was a good approximation.
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Fig. S6. Comparison between the three structures representative of structural states 1 (red structure), 2 (blue structure), and 3 (green structure) defined in the
free-energy surface (FES) built on PC1 and PC2 (inset of Fig. 4 of the main text). The structures were extracted from the MD trajectory, and each structure
represents a snapshot corresponding to the most probable molecular structure in basins 1, 2, and 3 of the FEL (PC1, PC2). (A) The three representative structures
aligned on their backbone. (B) Same as A and zoomed in on the C-terminal loop of the protein involved in the collective modes discussed in the main text.
Hydrogen bonds in structural state 1, 2, and 3 are shown in C, D, and E, respectively.

Fig. S7. Contribution of mode 1 to the MSF (λ1ν1;n, filled symbols and full lines), contribution of modes 1 and 2 to the MSF (λ1ν1;n þ λ2ν2;n, red empty symbols
and red dashed lines), and the whole MSF (empty symbols and dotted lines) along the amino acid sequence of VA3. Dihedral angles with multiple-minima
potentials (Fig. 1 of themain text) are shown by squares symbols. All calculations were performed from the five concatenatedMD runs (over 400 ns) by applying
dPCA to the vectors unðtÞ ¼ fcos½δnðtÞ�; sin½δnðtÞ�g.
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Fig. S8. Comparison of the correlation coefficient R between the trajectories γnðtÞ and δnðtÞ (filled symbols) and between the steps ΔγnðtÞ and ΔδnðtÞ (empty
symbols) along the amino acid sequence of VA3 computed from each of the five MD runs (80-ns duration each). The average of the values of R of each of the
five MD run is shown for each value of n. The α-helices and β-sheets are indicated by light gray and dark gray stripes, respectively.

Fig. S9. Comparison of the evolution of the correlation coefficient RnðMÞ (lines and filled diamonds) between the displacements Δγnðt;MÞ and Δδnðt;MÞ as
function of the logarithm of the number M of steps, along the amino acid sequence of VA3. Results were computed from the five concatenated MD runs
(400 ns). Each curve RnðMÞ for n ¼ 2 to 44, is plotted between 0 and 1 with a tick mark every 0.2. The correlation coefficient RnðMÞwas computed forM equals
to 1, 10, 30, 100, 500, 1,000, 2,000, and 10,000. The values of R computed between the time series γnðtÞ and δnðtÞ extracted from the concatenatedMD trajectory
of 400 ns duration are shown for comparison (circles) at M ¼ 10;000 and are generally hardly discernable from the values of Rnð10;000Þ.

Fig. S10. Amino acid sequence of VA3. Residues n located in a helix are in a filled black box and residues n located in a β-sheet are in a filled orange box.
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