
El Emam et al.: A protocol for the secure linking of registries for HPV surveillance
Appendix S1

1/23: Appendix S1- v10.docx

Appendix	S1	
This appendix presents the detailed theory and theoretical results behind our protocol, as well as some of
the practical considerations when deploying it in real surveillance settings.

1 A Commutative Hash Function for Private De-duplication
The choice of a commutative hash function is important to ensure that the linking fields, which can identify
the patients, cannot be discovered through an attack. In this section we examine the security of a
previous matching protocol which uses commutative hash functions, and based on that analysis describe
some improvements which we implement in our protocol.

A system was recently developed for the Department of Housing and Urban Development (HUD) for
securely tracking and counting domestic violence shelter clients, and was demonstrated in a real setting
in the state of Iowa [1]. The problem of securely tracking individuals as they visit multiple sites is similar to
our problem of securely matching records in multiple registries.

This HUD system is known as PrivaMix. The setup for PrivaMix is similar to ours whereby there are
multiple shelters (registeries) sending data to a central planning office (Aggregator) to detect duplicates.
The main difference between our protocol and PrivaMix is in what is done with the detected duplicates. In
the PrivaMix case the duplicates are used to ensure that domestic violence clients are counted once. In
our case duplicates indicate that a patient is in both registries and is counted as a match in a contingency
table cell.

PrivaMix uses the Benaloh and de Mare [2] notion of a quasi commutative hash function in the context of
their cryptographic accumulator paradigm. Given a public base x and the public product of two large,

rigid, primes n pq , a quasi-commutative hash z of a set of values 1 kyy   is computed as

follows:

1 1
1 1((,), ,), o() m(dk ky y y

k kz H H xH x y y y n
  

The quasi-commutative property is illustrated by the fact that, given a set of values 1 kyy   , the

accumulated result z is invariant under arbitrary permutation :

(1) (1) ()

(1) (1) ()((,), ,(od(),) mk ky y y

k kH x y y yz H x nH   
  


  

At first glance this may seem like a suitable construction for the purposes of secure de-duplication of
records (i.e., private set intersection). The primary security goal of an accumulator, however, is to prevent
false claims of set membership, and not necessarily to hide the elements themselves. Indeed, the use of
the Benaloh/de Mare accumulator in the context of private-set intersection can lead to re-identification via
a dictionary attack.

1.1 A Security Analysis of the Shelter Client Tracking Protocol
Below we demonstrate an attack on the PrivaMix de-duplication protocol using the Benaloh/de Mare

accumulator. We will use our set-up of matching two registries. Let 1 2{ },RR R be two registries with

secret random values 1r and 2r respectively. Assume that the linking field is the social security number

(SSN) of the patient, and 1R and 2R will compute the quasi-commutative hash z of the SSN:

El Emam et al.: A protocol for the secure linking of registries for HPV surveillance
Appendix S1

2/23: Appendix S1- v10.docx

1 2
2 1 1 2, (,)) (, (,)) mo(dSSNr rH r SSN H r Hz r SSN x nH r  

Both registries compute individual hashes for each patient in their respective databases, each sending
results to an Aggregator P . De-duplication stems from the fact that a patient whom exists in both
registries will generate the same hash as a result of the quasi-commutative property. Since the same
hash value will appear in the lists of both registries, P is able to determine that the patient is in both
registries.

A dictionary attack is possible and can be mounted independently of the bit length of the random factors

1r and 2r , allowing an attacker to recover the SSN. Let w represent the total number of valid/possible

SSNs. Without loss of generality, we consider an attempt to re-identify the SSNs contained in the partial

hash list of registry 1R , with the adversary representing either 2R ,

P , or any other party able to observe

the protocol transcript. Let registry 1R ’s patient list consist of two social security numbers, aSSN and

bSSN . Registry 1R computes the hashes:

1
1(,) modar SSN

a aH r SS nz N x  ,

and

1
1(,) modbr SS

b b
NH r SS xz N n  ,

and sends them to P , who, in turn, forwards them to 2R .

An adversary, observing az and bz , then builds two dictionaries aD and bD as follows:

1{ , }, w
a

SSNSSN
a aD z z 

,

and

1{ , }, w
b

SSNSSN
b bD z z  .

The adversary then searches for the i ad D and the j bd D such that i jd d , which corresponds to:

11 mod modb ja i
r SSN SSNr SSN SSNx n x n

The adversary can then conclude that az is the hash of social security number jSSN , and similarly that

bz is the hash of social insurance number iSSN . More importantly, the bit-length of 1r has no impact on

computational workload of the attack.

Finally, dictionary aD can be used to efficiently invert additional hashes. For example, to re-identify a

third hash 1 modCr SSN
cz x n , the attacker would simply compute 1) mod(a a cSSN r SSN SSN

c cz z x n  and

find the i ad D  such that i cd z  , allowing the attacker to conclude cz corresponds to the hash of

social security number iSSN  .

A dictionary of this kind clearly undermines the security claims of this protocol, making privacy dependent
on the size of the SSN space, instead of the key/random factor space, as was intended and would be
expected.

El Emam et al.: A protocol for the secure linking of registries for HPV surveillance
Appendix S1

3/23: Appendix S1- v10.docx

Is this attack practical? With a social security number space of 9-digits, 302w  , building the two

dictionaries would require at most 312 modular exponentiations. With an RSA modulus of 1024-bits, a

contemporary CPU/GPU might reasonably be expected to compute 102 modular exponentiations per
second, suggesting a time scale of 1-2 CPU weeks as an upper bound on building the dictionaries. A
standard contemporary multi-core desktop computer, therefore, could compute the dictionaries on the
order of a few days, and the task is fully parallelizable. Paying a cloud computing service, for example,
could potentially reduce the time to hours or even minutes. Of course, once the dictionaries have been
computed, additional re-identifications require only one modular exponentiation and look-up each. The
dictionaries require less than 300GB of storage space, which would allow them to fit on a single hard
drive.

The existence of an attack against the PrivaMix protocol stems from using a cryptographic primitive—the
Benaloh/de Mare accumulator—to fulfill a purpose that it was not designed for. In the following section,
we describe alternative constructions that fit our private de-duplication needs, but is not susceptible to the
dictionary attack above.

1.2 A Secure Accumulator for Private De-duplication in the RSA
Setting

Our first construction relates closely to that of Huberman et al [3], which is considered secure against a
passive adversary in the random oracle model. Given a cryptographic function ()h ,e.g., SHA-256, public

RSA modulus n pq , secret random factors 1 2,r r , the hash of message m is computed as follows:

1 2
2 1 1 2' (, (,)) (, (,)) () modr rz H r H r m H r H r m h m n  

The following is a sketch of the security properties:

 Let modrc nm . It is infeasible to recover m given c , r and n according to the RSA
assumption.

 A message raised to a private random factor r prevents a chosen plaintext attack. That is, given

modrc nm and some 'm , it is infeasible to determine whether 'm m .

 Cryptographic hash ()h m destroys potential linear relationships between messages (with high

statistical probability), preventing guessing attacks based on the underlying homomorphic

properties. For example, let 1 2,z z be the commutitive hashes of two SSN’s. Suppose an attacker

guesses that 1 2,z z corresponds to SSN’s 00000002 and 00000004 respectively. If the

cryptographic hash ()h is not applied prior to exponentiation, it is easy to see that the attacker

can reject this guess if 2
1 2z z . Numerous guesses of this kind can potentially lead to

reidentification in a manner similar to the attack presented above. By applying ()h , the simple

linear relationship between the messages is destroyed. We claim it is computationally infeasible

to compute 1 2{ | () mod () mod }aa h m n h m n , and thus infeasible to conduct guessing

attacks.

1.3 A Secure Accumulator for Private De-duplication in the Discrete
Log Setting

A limitation of the previous construction is the practical difficulty of implementing a secure multi-party
protocol to generate an RSA modulus n pq for which the factors p and q are not known to any

protocol participant. Such protocols exist but are inefficient [4, 5].

El Emam et al.: A protocol for the secure linking of registries for HPV surveillance
Appendix S1

4/23: Appendix S1- v10.docx

An alternative construction is to work in the discrete log (DL) setting, which provides two benefits over the
previous construction. Firstly, this setting allows the modulus to be selected publically, eliminating the
need for a costly setup phase, and secondly, moduli in the DL setting are smaller than RSA moduli at
equivalent security levels, allowing for more efficient evaluation.

A construction in this setting offering the desired commutative property is based on the symmetric

encryption scheme due Pohlig and Hellman [6]. Let q be a multiplicative subgroup of *
p� such that

2 1p q  . Let 1: q qe  �  be a bijective encoding function that maps positive integers into q . A

common choice is 2() (1) mode m m p  . Given a cryptographic function ()h and message m , the

message holder first computes ())ˆ (e h mm  . The quasi-commutative hash of m given secret random

factors 1 2 1{ , } R qr r  � , is then defined as [7]:

1 2
2 1 1 2 ˆ' (, (,)) (, (,)) modr rz H r H r m H r H r m m p   ..……………………… (1)

The following is a sketch of the security properties:

 Recovering m̂ given 'z is equivalent to solving the discrete logarithm problem (DLP),

 A message raised to a private random factor prevents a chosen plaintext attack (as described
above).

 Cryptographic hash ()h prevents guessing attacks (as described above). For two messages

1 2{ , },m m their encodings 1 1 2 2ˆ ˆ{ (()), (())}m e h m m e h m  are uniformly distributed elements in

q . Consider an a such that 1 2ˆ ˆam m . Then
1ˆ 2ˆlog ()ma m . Therefore, any algorithm that can

compute 1 2ˆ ˆ{ | }aa m m can also solve the discrete logarithm problem.

We therefore use the construction in equation (1) in our protocol for matching the identifiers across the
registries.

2 Protocols for Other Bivariate Statistics
This section describes the protocols for computing some common bivariate statistics on the linked data.
For simplification mod n will be ommited from the equations.

We assume that we have the contingency table in Table 1 with the indicated notation.

 Any HPV

 -ve +ve

E
th

n
ic

it
y Aboriginal

White

11 1,11 2,11n n n  12 1,12 2,12n n n 

21 1,21 2,21n n n  22 1,22 2,22n n n 

El Emam et al.: A protocol for the secure linking of registries for HPV surveillance
Appendix S1

5/23: Appendix S1- v10.docx

Table 1: Notation for computing statistics.

2.1 Chi-Square Test
The chi‐square value is given by:

..……………………… (2)

The two Aggregators will jointly and securely compute the chi-square value, using their private values.
Equation (2) can be converted to the following equation:

To reach to the final result in equation (2), we will utilize the secure two-party addition and multiplication
protocols. The steps are as follows:

1. Aggregator 1 and Aggregator 2 run secure two-party multiplication for the following pairs:

 and such that:

 and such that:

 and such that:

 and such that:

2. Aggregator 1 performs the following computations:

3. Aggregator 2 performs the following computations:

2
2 11 22 12 21 11 12 21 22

11 12 21 22 12 22 11 21

() ()

()()()()

n n n n n n n n

n n n n n n n n
    


   

               
                   

2

1,11 2,11 1,22 2,22 1,12 2,12 1,21 2,21 1,11 2,11 1,12 2,12 1,21 2,21 1,22 2,222

1,11 2,11 1,12 2,12 1,21 2,21 1,22 2,22 1,12 2,12 1,22 2,22 1,11 2,11 1,21 2,21

n n n n n n n n n n n n n n n n

n n n n n n n n n n n n n n n n


           


           

1,11n 2,22n 1,11 2,22 1,1 2,1n n a a  

1,22n 2,11n 1,22 2,11 1,2 2,2n n a a  

1,12n 2,21n 1,12 2,21 1,3 2,3n n a a  

1,21n 2,12n 1,21 2,12 1,4 2,4n n a a  

1,5 1,11 1,22a n n  1,6 1,12 1,21a n n 

1,7 1,11 1,12 1,21 1,22a n n n n    1,8 1,11 1,12a n n 

1,9 1,21 1,22a n n  1,10 1,12 1,22a n n 

1,11 1,11 1,21a n n  1,12 1,1 1,2 1,3 1,4 1,5 1,6a a a a a a a     

2,5 2,11 2,22a n n  2,6 2,12 2,21a n n 

El Emam et al.: A protocol for the secure linking of registries for HPV surveillance
Appendix S1

6/23: Appendix S1- v10.docx

 2,12 2,1 2,2 2,3 2,4 2,5 2,6a a a a a a a     

4. Aggregator 1 and Aggregator 2 run secure two-party addition for the following pairs:

1,12a and 2,12a such that: 1,12 2,12 1,1 2,1a a b b  

 and such that:

 and such that:

 and such that:

 and such that:

 and such that:

5. Aggregator 1 computes
2

1 1,1 1,2c b b  and 1 1,3 1,4 1,5 1,6d b b b b    , and sends these to the PHU.

6. Aggregator 2 computes
2

2 2,1 2,2c b b  and 2 2,3 2,4 2,5 2,6d b b b b    , and sends these to the

PHU.

Now 2 1 2

1 2

c c

d d
 




is computed by the PHU. Since the PHU knows the number of rows and columns, it is

relatively straight forward to compute the degrees of freedom and the p-value from that.

2.2 Relative Risk
Relative risk can be computed from the contingency table as follows:

 ..……………………… (3)

This can be converted to:

 ..……………………… (4)

2,7 2,11 2,12 2,21 2,22a n n n n    2,8 2,11 2,12a n n 

2,9 2,21 2,22a n n  2,10 2,12 2,22a n n 

2,11 2,11 2,21a n n 

1,7a 2,7a 1,7 2,7 1,2 2,2a a b b  

1,8a 2,8a 1,8 2,8 1,3 2,3a a b b  

1,9a 2,9a 1,9 2,9 1,4 2,4a a b b  

1,10a 2,10a 1,10 2,10 1,5 2,5a a b b  

1,11a 2,11a 1,11 2,11 1,6 2,6a a b b  

 
 

11 21 22

21 11 12

n n n
r

n n n

 


 

  
  

  
  

1,11 2,11 1,21 2,21 1,22 2,22 1,11 2,11 1,21,22 2,21,22

1,21 2,21 1,11 2,11 1,12 2,12 1,21 2,21 1,11,12 2,11,12

n n n n n n n n n n
r

n n n n n n n n n n

     
 

     

El Emam et al.: A protocol for the secure linking of registries for HPV surveillance
Appendix S1

7/23: Appendix S1- v10.docx

where , , and are

locally computed by Aggregator 1 and Aggregator 2. We then follow these steps:

1. By applying secure two-party addition the fraction in equation (14) can be converted to separate
and private values for the two Aggregators. Aggregator 1 and Aggregator 2 run secure two-party
addition for their following pairs:

 and such that: 1,11 2,11 1,1 2,1n n a a  

 and such that: 1,21 2,21 1,2 2,2n n a a  

 and such that: 1,21,22 2,21,22 1,3 2,3n n a a  

 and such that: 1,11,12 2,11,12 1,4 2,4n n a a  

Thus, the relative risk will be converted to:

2. Aggregator 1 and Aggregator 2 then compute the two fractions 1

1

b

c
 and 2

2

b

c
, respectively, such

that:

1,1 1,21

1 1,3 1,4

a ab

c a a






2,1 2,22

2 2,3 2,4

a ab

c a a






3. Aggregator 1 and Aggregator 2 send their private values,
 1b , 1c , 2b , and 2c , to the PHU. Now,

PHU computes 1 2

1 2

b b
r

c c





.

2.3 Confidence Interval for Odds Ratio
The confidence interval for odds ratio could be computed as follows:

 ………………… (5)

 ..…………… (6)

In equation (5), the confidence interval for the log odds ratio could be computed by the exponentiation of
the intervals. The value for z could be derived from the standard normal table.

Equation (6) is converted to the following equation using the Aggregators’ private shares. The PHU can
perform square root from the final result as follows:

1,21,22 1,21 1,22n n n  1,11,12 1,11 1,12n n n  2,21,22 2,21 2,22n n n  2,11,12 2,11 2,12n n n 

1,11n 2,11n

1,21n 2,21n

1,21,22n 2,21,22n

1,11,12n 2,11,12n

  
  

 
 

 
 

1,11 2,11 1,21,22 2,21,22 1,1 1,2 2,1 2,2

1,21 2,21 1,11,12 2,11,12 1,3 1,4 2,3 2,4

n n n n a a a a
r

n n n n a a a a

   
  

   

ln() ln()ORCI z SE  

11 12 11 22

1 1 1 1
SE

n n n n
   

El Emam et al.: A protocol for the secure linking of registries for HPV surveillance
Appendix S1

8/23: Appendix S1- v10.docx

    

2

1,11 2,11 1,12 2,12 1,21 2,21 1,22 2,22

1,11 2,11 1,12 2,12 1,21 2,21 1,22 2,22

1 1 1 1
SE

n n n n n n n n

A B C D

n n n n n n n n

   
   

  


   

 ..…………… (7)

in which:

   1,12 2,12 1,21 2,21 1,22 2,22A n n n n n n   

   1,11 2,11 1,21 2,21 1,22 2,22B n n n n n n   

   1,11 2,11 1,12 2,12 1,22 2,22C n n n n n n   

   1,11 2,11 1,12 2,12 1,21 2,21D n n n n n n   

To separate the standard error, such that each of the two Aggregators computes a different value, secure
two-party addition and multiplication are utilized in the following steps.

1. For equation A , Aggregator 1 and Aggregator 2 run secure two-party multiplication for their
following pairs:

1,12 1,21n n and 2,22n such that:  1,12 1,21 2,22 1,1 2,1n n n a a   

1,12 1,22n n and 2,21n such that:  1,12 1,22 2,21 1,2 2,2n n n a a   

1,21 1,22n n and 2,12n such that:  1,21 1,22 2,12 1,3 2,3n n n a a   

1,12n and 2,21 2,22n n such that:  1,12 2,21 2,22 1,4 2,4n n n a a   

1,21n and 2,12 2,22n n such that:  1,21 2,12 2,22 1,5 2,5n n n a a   

1,22n and 2,12 2,21n n such that:  1,22 2,12 2,21 1,6 2,6n n n a a   

2. For equations B , C , and D Aggregator 1 and Aggregator 2 run secure two-party multiplication

same as in the previous step to get the output shares, 1,1 1,6 1,1 1,6 1,1 1,6, , , , , , , ,b b c c d d   , and

2,1 2,6 2,1 2,6 2,1 2,6, , , , , , , ,b b c c d d   , respectively.

3. For the denominator of equation (7) Aggregator 1 and Aggregator 2 run secure two-party
multiplication for their following pairs:

1,11 1,12 1,21n n n  and 2,22n such that:  1,11 1,12 1,21 2,22 1,1 2,1n n n n e e    

El Emam et al.: A protocol for the secure linking of registries for HPV surveillance
Appendix S1

9/23: Appendix S1- v10.docx

1,11 1,12 1,22n n n  and 2,21n such that:  1,11 1,12 1,22 2,21 1,2 2,2n n n n e e    

1,11 1,21 1,22n n n  and 2,12n such that:  1,11 1,21 1,22 2,12 1,3 2,3n n n n e e    

1,12 1,21 1,22n n n  and 2,11n such that:  1,12 1,21 1,22 2,11 1,4 2,4n n n n e e    

1,22n and 2,11 2,12 2,21n n n  such that:  1,22 2,11 2,12 2,21 1,5 2,5n n n n e e    

1,21n and 2,11 2,12 2,22n n n  such that:  1,21 2,11 2,12 2,22 1,6 2,6n n n n e e    

1,12n and 2,11 2,21 2,22n n n  such that:  1,12 2,11 2,21 2,22 1,7 2,7n n n n e e    

1,11n and 2,12 2,21 2,22n n n  such that:  1,11 2,12 2,21 2,22 1,8 2,8n n n n e e    

1,11 1,12n n and 2,21 2,22n n such that:    1,11 1,12 2,21 2,22 1,9 2,9n n n n e e    

1,11 1,21n n and 2,12 2,22n n such that:    1,11 1,21 2,12 2,22 1,10 2,10n n n n e e    

1,11 1,22n n and 2,12 2,21n n such that:    1,11 1,22 2,12 2,21 1,11 2,11n n n n e e    

1,12 1,21n n and 2,11 2,22n n such that:    1,12 1,21 2,11 2,22 1,12 2,12n n n n e e    

1,12 1,22n n and 2,11 2,21n n such that:    1,12 1,22 2,11 2,21 1,13 2,13n n n n e e    

1,21 1,22n n and 2,11 2,12n n such that:    1,21 1,22 2,11 2,12 1,14 2,14n n n n e e    

4. Aggregator 1 performs the following local computations:

1,1 1,12 1,21 1,22g n n n  

1,2 1,11 1,21 1,22g n n n  

1,3 1,11 1,12 1,22g n n n  

1,4 1,11 1,12 1,21g n n n  

1,5 1,11 1,12 1,21 1,22g n n n n   

6 6 6 6 4

1,1 1, 1, 1, 1, 1,
1 1 1 1 1

i i i i i
i i i i i

h a b c d g
    

        

14

1,2 1,5 1,
1

i
i

h g e


 

5. Aggregator 2 performs the following local computations:

2,1 2,12 2,21 2,22g n n n   2,5 2,11 2,12 2,21 2,22g n n n n   

El Emam et al.: A protocol for the secure linking of registries for HPV surveillance
Appendix S1

10/23: Appendix S1- v10.docx

2,2 2,11 2,21 2,22g n n n  

2,3 2,11 2,12 2,22g n n n  

2,4 2,11 2,12 2,21g n n n  

6 6 6 6 4

2,1 2, 2, 2, 2, 2,
1 1 1 1 1

i i i i i
i i i i i

h a b c d g
    

        

14

2,2 2,5 2,
1

i
i

h g e


 

Therefore, Equation (7) is converted to:

1,1 2,12

1,2 2,2

h h
SE

h h






6. Aggregator 1 and Aggregator 2 perform secure two‐party addition for the following pairs:

1,1h and 2,1h such that: 1,1 2,1 1 2h h i i  

1,2h and 2,2h such that: 1,2 2,2 1 2h h j j  

7. Aggregator 1 and Aggregator 2 send 1i , 1j , 2i , and 2j to the PHU, respectively. The term

1 2

1 2

i i

j j




 produces the same result as equation (7).

2.4 Confidence Interval for Relative Risk
The confidence interval for relative risk could be computed as follows:

     
12 22

ln()
11 11 12 21 21 22

lnRR

n n
CI RR z

n n n n n n
   

   
 ..…………… (8)

Equation (8) is the confidence interval of log relative risk and the confidence interval could be computed
by taking the exponentiation of the intervals. The value of z could be derived from the standard normal
table. By considering the separate shares of the two aggregators, the value under the square root of
equation (8), would be:

       
1,12 2,12 1,22 2,22

1,11 2,11 1,11 2,11 1,12 2,12 1,21 2,21 1,21 2,21 1,22 2,22

n n n n

n n n n n n n n n n n n

 


         
 ….. (9)

To compute equation (9), the two Aggregators perform the following steps.

1. Aggregator 1 performs the following local computations:

1,1 1,11 1,12a n n 

1,2 1,21 1,22a n n 

1,3 1,12 1,21 1,2a n n a  

1,4 1,22 1,11 1,1a n n a  

2. Aggregator 2 performs the following local computations:

El Emam et al.: A protocol for the secure linking of registries for HPV surveillance
Appendix S1

11/23: Appendix S1- v10.docx

2,1 2,11 2,12a n n 

2,2 2,21 2,22a n n 

2,3 2,12 2,21 2,2a n n a  

2,4 2,22 2,11 2,1a n n a  

3. Aggregator 1 and Aggregator 2 run secure two‐party multiplication for the following pairs:

 1,12 1,21n n and 2,2a such that:  1,12 1,21 2,2 1,5 2,5n n a a a   

 1,12 1,2n a and 2,21n such that:  1,12 1,2 2,21 1,6 2,6n a n a a   

1,12n and  2,21 2,2n a such that:  1,12 2,21 2,2 1,7 2,7n n a a a   

 1,21 1,2n a and 2,12n such that:  1,21 1,2 2,12 1,8 2,8n a n a a   

1,21n and  2,12 2,2n a such that:  1,21 2,12 2,2 1,9 2,9n n a a a   

1,2a and  2,12 2,21n n such that:  1,2 2,12 2,21 1,10 2,10a n n a a   

 1,22 1,11n n and 2,1a such that:  1,22 1,11 2,1 1,11 2,11n n a a a   

 1,22 1,1n a and 2,11n such that:  1,22 1,1 2,11 1,12 2,12n a n a a   

1,22n and  2,11 2,1n a such that:  1,22 2,11 2,1 1,13 2,13n n a a a   

 1,11 1,1n a and 2,22n such that:  1,11 1,1 2,22 1,14 2,14n a n a a   

1,11n and  2,22 2,1n a such that:  1,11 2,22 2,1 1,15 2,15n n a a a   

1,1a and  2,22 2,11n n such that:  1,1 2,22 2,11 1,16 2,16a n n a a   

4. Aggregator 1 performs the following local computations:

1,17 1,11 1,1 1,21 1,2a n a n a   

5. Aggregator 2 performs the following local computations:

2,17 2,11 2,1 2,21 2,2a n a n a   

6. Aggregator 1 and Aggregator 2 run secure two‐party multiplication for the following pairs:

El Emam et al.: A protocol for the secure linking of registries for HPV surveillance
Appendix S1

12/23: Appendix S1- v10.docx

 1,11 1,21 1,1n n a  and 2,2a such that:  1,11 1,21 1,1 2,2 1,18 2,18n n a a a a    

 1,11 1,21 1,2n n a  and 2,21n such that:  1,11 1,21 1,2 2,21 1,19 2,19n n a n a a    

 1,11 1,1n a and  2,21 2,2n a such that:    1,11 1,1 2,21 2,2 1,20 2,20n a n a a a    

 1,11 1,21 1,2n n a  and 2,1a such that:  1,11 1,21 1,2 2,1 1,21 2,21n n a a a a    

 1,11 1,21n n and  2,1 2,2a a such that:    1,11 1,21 2,1 2,2 1,22 2,22n n a a a a    

 1,11 1,2n a and  2,1 2,21a n such that:    1,11 1,2 2,1 2,21 1,23 2,23n a a n a a    

1,11n and  2,21 2,1 2,2n a a  such that:  1,11 2,21 2,1 2,2 1,24 2,24n n a a a a    

 1,21 1,1 1,2n a a  and 2,11n such that:  1,21 1,1 1,2 2,11 1,25 2,25n a a n a a    

 1,1 1,21a n and  2,2 2,11a n such that:    1,1 1,21 2,2 2,11 1,26 2,26a n a n a a    

 1,1 1,2a a and  2,11 2,21n n such that:    1,1 1,2 2,11 2,21 1,27 2,27a a n n a a    

1,1a and  2,11 2,21 2,2n n a  such that:  1,1 2,11 2,21 2,2 1,28 2,28a n n a a a    

 1,21 1,2n a and  2,11 2,1n a such that:    1,21 1,2 2,11 2,1 1,29 2,29n a n a a a    

1,21n and  2,11 2,1 2,2n a a  such that:  1,21 2,11 2,1 2,2 1,30 2,30n n a a a a    

1,2a and  2,11 2,21 2,1n n a  such that:  1,2 2,11 2,21 2,1 1,31 2,31a n n a a a    

7. Aggregator 1 performs the following local computations:

16

1 1,
3

i
i

b a


 
31

1 1,
17

i
i

c a


 

8. Aggregator 2 performs the following local computations:

16

2 2,
3

i
i

b a


 
31

2 2,
17

i
i

c a


 

Equation (9) can be represented as:

El Emam et al.: A protocol for the secure linking of registries for HPV surveillance
Appendix S1

13/23: Appendix S1- v10.docx

1 2

1 2

b b

c c




 ..…………… (10)

9. Aggregator 1 and Aggregator 2 perform secure two‐party addition for the following pairs:

1b and 2b such that: 1 2 1 2b b d d  

1c and 2c such that: 1 2 1 2c c g g  

10. Aggregator 1 and Aggregator 2 send 1d , 1g , 2d , and 2g to the PHU, respectively. The term

1 2

1 2

d d

g g




 produces equation (10).

Figure 1: Each Aggregator can be incorporated within the registry to make a single node.

El Emam et al.: A protocol for the secure linking of registries for HPV surveillance
Appendix S1

14/23: Appendix S1- v10.docx

3 Security Analysis
This protocol assumes that the Aggregators are semi-trusted. This means that they would not have
access to any raw linking values nor sensitive values about the patients. Nor would they be able to
determine identity from small cells because any individual Aggregator would not have the complete cell
count for any cell in the contingency table. This also means that if an Aggregator is compromised by an
adversary, the adversary would not be able to get access to personal health information. The only way an
Aggregator would know the correct cell count in plaintext is if there is collusion between the two
Aggregators.

The registries do not share any secret keys and a compromise at one registry would not affect the other
one. This means that the registries do not need to trust each other. Furthermore, it is not possible for a
registry to gain additional information about any of its patients through this protocol. For example, it is not
possible for a registry to learn if any of its patients is in the other registry.

Collusion between a registry and an Aggregator would not compromise the security of the protocol since
this would still not allow either of them to know the complete cell count. Furthermore, collusion between
an Aggregator and the PHU would not create a risk because they would not be able to reverse engineer
the cell counts.

The PHU does not get raw data nor the actual contingency table. By obtaining only the statistics the PHU
can achieve its surveillance objectives without having access to patient identities.

We use two basic protocols, secure two-party addition and multiplication. The security of these protocols
has already been established [8].

Under certain circumstances it may be possible to reduce the number of nodes. If both registries are
population registries (i.e., everyone in the population is included in these registries), then it would be
possible to combine each registry with an aggregator into a single node as illustrated in Figure 1. In
practice, because collusion between a registry and the Aggregator does not compromise the security of
the protocol it would be safe to combine them into a single node. This would also reduce the number of
nodes required to deploy the protocol by 50%. With such a deployment, no additional physical nodes are
required to operationalize the protocol and no independent third parties are necessary (effectively, each
registry acts as an sTTP for the other registry).

With a combined node and population registries, a registry will not learn whether any of its patients is in
the other registry because all patients are. If either registries has a subset of the population, then the
registry and Aggregator cannot be combined into a single node because one of the registries would learn
something new, at least for some of the patients. This new information would be that a patient exists in
the other registry.

4 Theoretical Performance Evaluation
The challenge with secure computation protocols is that they are slower than non-secure ones. This
makes the assessment of performance an important determinant of their practicability.

The performance of this protocol is driven by computation time and communication time. The
communication time will be a function of the network latency among the parties; therefore we will only
consider the number of messages exchanged. We assume that each value sent is a message. This is a
conservative assumption as often multiple values would be bundled together in a single message.

4.1 Matching Phase

We will use the notation to denote the number of patients who match a query .

4.1.1 Communication Costs

The computation of the commutative hash for any single patient in a registry requires three messages.
Therefore, the theoretical total number of messages that will be exchanged for the four queries required

1N  1Q 

El Emam et al.: A protocol for the secure linking of registries for HPV surveillance
Appendix S1

15/23: Appendix S1- v10.docx

for a 2x2 contingency table are: . Although in practice, each registry will

respond with all of the hashed values per query in one message, therefore 12 messages would be
transmitted.

4.1.2 Computation Time

Let be the time it takes to perform a single commutative hash. The total computation time to get all of

the hash values for the patients would be: . The value of needs to be

estimated empirically.

The actual matching consists of two steps: (a) matching the hashed values within each Aggregator, and
(b) those that do not match are reconciled among the two Aggregators.

Each registry randomly sends half its hashed values to each Aggregator. Therefore Aggregator 1 will

have on average , , , and patient hashes, and Aggregator 2 will have a similar

number of patient hashes for each of the cells.

Matching the hashed values within the Aggregator (step a above) can be done quite efficiently. If the

Aggregator is matching values with values, then only comparisons are

required if the two lists are ordered. The complexity of a merge sort is in the order of

and for each of the two hash value lists [9].

Let denote the number of hashed values that can be matched by Aggregator 1 when it matches

the patient hash values that are returned by and in step (a). This means that and

 hashed values will need to be reconciled with Aggregator 2. With ordered lists this can be

performed in and

comparisons.

If the value of and then this is the maximum number of hash values that need to

be reconciled in step (b). On the other hand if and then no reconciliation

between the two aggregators is needed.

Because reconciliation requires a secure two party addition, this will be more computationally expensive
than step (a). Let be the time it takes to perform an encryption or decryption. It has been shown that

secure two-party addition and multiplication each requires time [8]. However, because the
encryptions are done separately and in parallel by the two parties, the elapsed computation time would be

. Therefore, the total computation time for the first cell would be:

.

 1 2 1 23 N N N N     


 1 2 1 22 N N N N       

1

2

N  2

2

N 1

2

N 2

2

N 

1

2

N  2

2

N 1 2min ,
2 2

N N  
 
 

1 1log
2 2

N N    
 

2 2log
2 2

N N    
 

1 1 , 2m  

1Q  2Q
1

1 1 , 22

N
m

 

2
1 1 , 22

N
m

 

1 2
1 1 , 2 2 1 , 2min ,

2 2

N N
m m 

   
   
 

2 1
1 1 , 2 2 1 , 2min ,

2 2

N N
m m 

   
   
 

1 1 , 2 0m    2 1 , 2 0m   

1
1 1 , 2 2

N
m 

   2
2 1 , 2 2

N
m 

  


3

2

1 2 2 1
1 1 , 2 2 1 , 2 1 1 , 2 2 1 , 22 min , min ,

2 2 2 2

N N N N
m m m m    

       

                 

El Emam et al.: A protocol for the secure linking of registries for HPV surveillance
Appendix S1

16/23: Appendix S1- v10.docx

The general scheme described above would apply to all of the remaining cells. For each secure 2-party
addition and multiplication two messages need to be transmitted. In practice, when matching each
Aggregator will send all of the values that need to be matched at once rather than one by one. Therefore
the total number of messages transmitted will be 2.

4.2 Analysis Phase
The time to perform the computation of statistics will be dominated by the encryption/decryption time.
Therefore, we focus on those as the main performance measurements.

The computation of the chi-square value requires a fixed computation time for each cell. The

computation of odds ratio requires a fixed computation time per cell. The relative risk value

requires a fixed computation time as well. As can be seen, the actual computation time is not
related to the size of the data set.

The total number of messages that would need to be transmitted is 20 for the chi-square test, and 8 for
the odds ratio and relative risk calculations per cell.

4.3 Deployment

4.3.1 Deployment Requirements

When deploying our protocol, a number of issues need to be addressed:

 Interactive Use. The protocol we have presented assumes that the PHU would interactively send
queries to the registries. Therefore, the registries need to be available continuously to respond to
such queries.

 Unique identifiers. Since the protocol assumes deterministic matching, a reliable set of unique
identifiers or linking variables are required.

 Certificate authority. The basic protocol does not have a requirement for a centralized certificate
issuing authority. However, in practice such an authority would be needed to implement digital
signatures and secure communication among the parties. Current commercially available
certificate authorities can be used for that purpose.

 Authentication and digital signatures. Each registry would need to set-up appropriate
credentials for the other registries that it wishes to collaborate with. In addition, digital signatures
would be set-up so that the messages among the parties can be signed. A discussion of digital
signatures in the context of secure multi-party computation protocols for public health is provided
elsewhere [10].

While we described only three statistics on a contingency table, by following the same principles that we
describe here, one can extend this to other types of statistics on contingency tables.

4.3.2 Audit Mechanism

With a 2x2 contingency table there are four unknown values. If the PHU obtains four statistics on the
same contingency table then it would be possible to analytically reverse engineer the values of each of
the cells in the table. To mitigate against such a risk an automated audit mechanism needs to be put in
place. This would allow a maximum of 1C  statistics on the same contingency table, where C is the
number of cells in the table. A contingency table is characterized by the response categories in each of its
dimensions and the date range. This assumes that the data at the registries is static. If the data at the
registries is dynamic then the limit would be 1C  for each data snapshot. Such an audit mechanism
would not protect against collusion among users. For example, one user may request the maximum of
three statistics and another user may request the remaining statistic, and then together they can compute
the cell values.

10 2
4 2

4 2

El Emam et al.: A protocol for the secure linking of registries for HPV surveillance
Appendix S1

17/23: Appendix S1- v10.docx

An audit mechanism does not address two other scenarios: (a) collusion among PHUs who share
statistics on the same table where each PHU is below the number of statistics threshold, and (b) PHUs
that publish statistics. Risks from collusion can be addressed through data sharing agreements with the
PHUs. Active collusion would be a deliberate violation of a contract and cannot happen inadvertently.
Publishing statistics would also be prohibited by such an agreement.

4.3.3 Dishonest Parties

Our model assumed that the parties are semi-trusted. With the deployment scenario we described above
this requires a registry to be semi-trusted by the other registry. In situations where such trust may not be
warranted or the registry wishes to establish stronger guarantees, one can employ zero-knowledge proofs
to extend the current protocol, and this would protect against malicious parties [11].

4.3.4 PHU and Registry Complexity

The proposed protocol will only be implemented in practice if it is simple to use by the PHU. Most of the
complexity in the protocol would be embedded within the software that implements the registry and
Aggregator functions. For registries they would only need to set-up the hardware and software, connect
that to the source database(s), indicate which fields they are willing to share, and configure the accounts
for the other registries that they are willing to share data with. Once the software set-up is complete, the
secure linking and computation of statistics is transparent to the registry and does not require further
interventions.

Figure 2: A screen shot showing the interface that the PHU would see based on our pilot
implementation.

As an illustration, the end-user would interact with the system through an interface shown in Figure 2.
Here the PHU selects the variables in each registry they have access to and the response categories to

El Emam et al.: A protocol for the secure linking of registries for HPV surveillance
Appendix S1

18/23: Appendix S1- v10.docx

be included in the contingency table. The date interval and the particular statistics requested would also
be selected.

4.4 Zero Cells in Contingency Table
If any of the cells have a zero value, then the result of secure two-party addition will be zero. This would
reveal the existence of a zero cell in the contingency table during the computation of statistics to one of
the Aggregators and subsequently to the PHU. It is not uncommon for secure computation protocols to
reveal a zero input to one of the two parties [12]. However, in our case the exposure of a zero cell would
compromise our requirements.

To address this problem it is necessary to add a small constant value to each cell sum, such as 115 10 .
The original equations in the main paper for each of the aggregators were:

..……………………… (11)

would be modified to:

11
1,12 1 1 5 10n S c    

11
2,12 2 2 5 10n S c    

..……………………… (12)

Because all of the computations thus far have been on integers, we would need to change the scale for
the two-party addition and multiplication sub-protocols to work on real numbers instead to accommodate
the addition of a small fraction to the cell counts. The modified building block protocols for real numbers
are described below.

4.4.1 Protocols with Scaling

Scaling has to be utilized in these cases. Following are the ways we follow in the two main building
blocks, secure addition and multiplication, and the technique is the same in other building blocks. Here
without loss of generality we work on two-party case and general case would be the same.

4.4.1.1 Secure Two-Party Addition

Suppose there are two inputs 1a and 2a (real numbers) owned by the two parties 1P and 2P ,

respectively. The parties agree on an integer number, 1 2s s s  , as a scale to convert their numbers

into integers. Therefore, each party would do the scaling as follows:

1 1 10sb a  2 2 10sb a 

Then they run the secure addition protocol to obtain two private outputs 1c and 2c , such that:

1 2 1 2b b c c  

Now we have:

 1 2 1 2 10sc c a a   

1,12 1 1| |n S c 

2,12 2 2| |n S c 

El Emam et al.: A protocol for the secure linking of registries for HPV surveillance
Appendix S1

19/23: Appendix S1- v10.docx

Therefore, the final outputs, 1d and 2d , would be:

1

1
1 10s

c
d 

2

2
2 10s

c
d 

Using scaling the final equation is:

1 2 1 2a a d d  

4.4.1.2 Secure Two-Party Multiplication

Suppose there are two inputs 1a and 2a (real numbers) owned by the two parties 1P and 2P ,

respectively. The parties agree on an integer number, s , as a scale to convert their numbers to integer.
Therefore, each party do the scaling as follows:

1 1 10sb a  2 2 10sb a 

Then they run the secure multiplication protocol to obtain two private outputs 1c and 2c , such that:

1 2 1 2b b c c  

Now we have:

   1 2 1 210 10s sc c a a    

Therefore, the final outputs, 1d and 2d , would be:

1
1 210 s

c
d  2

2 210 s

c
d 

Using scaling the final equation is:

1 2 1 2a a d d  

4.4.2 Evaluation of Modified Building Blocks

In practice, the addition of a small constant to the cell counts will result in a negligible effect on the
computation of statistics. To illustrate the size of this error we computed the effect on the chi-square test
for sizes of tables up to 60 cells by 60 cells using randomly generated data ranging from 68,000 to 98,000
individuals in the table. The mean error and mean square error are shown in Table 2. In Table 3 we show
a set of cases where cell counts are limited to only 5. Here the constant error represents a larger
proportion of the count than for cells with large numbers. As can be seen, the error is quite small and
would have negligible impact on the analysis results. We obtained similar results for the other statistics.

El Emam et al.: A protocol for the secure linking of registries for HPV surveillance
Appendix S1

20/23: Appendix S1- v10.docx

Tables size Average difference MSE
4x4 10-10 10-21

10x10 10-8 10-19
20x20 10-7 10-17
30x30 10-6 10-16
60x60 10-5 10-14

Table 2: Accuracy of chi-square statistic with randomly generated data and a small constant
added to cell counts for 100 iterations. MSE is the mean square error.

Tables size Average difference MSE
4x4 10-9 10-20

10x10 10-8 10-19
20x20 10-7 10-17
30x30 10-6 10-17
60x60 10-6 10-15

Table 3: Accuracy of chi-square statistic with randomly generated data and a small constant
added to small cell counts (a maximum of 5 in each cell) for 100 iterations. MSE is the mean

square error.

4.5 Small Cells and Statistical Testing
One general issue regarding the stability of the final results for statistics using the contingency table is
when the values of one or more cells are very small, say 5 or less. In this situation the chi-square will
have reduced accuracy because of the small samples being used for estimation. The Aggregator, using
their private input shares for the cells, can play a critical function in detecting this and alert the PHU. To
do this, an Aggregator can run secure comparison on their private shares for each cell. Secure
comparison would compare the count with a specific threshold and detect the occurrence of this condition

without knowing each other’s private values for the cells. Suppose, the Aggregators want to compare

with the constant threshold number , and each of them has her own private share as follows:

They can run the following steps for the secure comparison:

1. Aggregator 1 encrypts her private value, , and sends to Aggregator 2.

2. Aggregator 2 generates a private random number, , encrypts that value and the constant

value, , and sends        2

1,11 2,11

r
E n E n E K   to Aggregator 1.

3. Aggregator 1 decrypts the received value and compares it with zero. If the decrypted value is

less than zero, it means that 11n K .

11n

K

11 1,11 2,11n n n 

1,11n  1,11E n

2r

K

El Emam et al.: A protocol for the secure linking of registries for HPV surveillance
Appendix S1

21/23: Appendix S1- v10.docx

This sub-protocol will be performed by the Aggregators for their private values of each cell. If small cells
are detected then they can inform the PHU as part of providing the results.

4.6 Differential Privacy: An Alternative Privacy-Preserving
Mechanism?

A possible alternative approach that we considered for the disclosure of statistics for the purpose of HPV
surveillance is differential privacy [13]. Below we first briefly describe differential privacy, how it can be
used within our protocol, and then explain why it would not be appropriate in this context.

Differential privacy requires that the answer to any query be “probabilistically indistinguishable” with or
without a particular row in the dataset. In other words, For any two datasets D and D , drawn from a
population  , that differ in exactly one record, if fK is a randomized function used to respond to an

arbitrary query f , then fK gives  -differential privacy if Pr[()] e Pr[(')]f fK D s K D s   . Some

authors interpret this as: “knowledge gain ratio from one data set over the other” [14]. Differential privacy

requires that the knowledge gain is less than e . Even if an individual removed her data from the data
set, no output would become significantly more or less likely [13]. The parameter  is public. Although

there is no principled basis for choosing  , values are typically set at 0.01, or 0.1, and sometimes ln 2 or
ln 3 .

In order to satisfy differential privacy in a query response situation, it has been common to use Laplace
distributed noise [15]: if r is the correct answer to a query f on a dataset D : ()f D r , then a

differentially private mechanism would output the response r y , where y is the noise drawn at random

from a Laplace distribution with mean 0 and scale /f  . f represents the maximum value for

|| () (') ||f D f D for all , 'D D  differing in one row. In other words, it is the maximum difference in

the values of ()f D when exactly one row of data is changed. f is the global sensitivity of the query

f over domain  , it is independent of the dataset and one must consider all datasets D to

determine its value.

If we treat a contingency table as a histogram, its sensitivity is 1 (since the addition or removal of any
database row affects the counts in one location by at most 1). Hence we can add independently

generated noise to the 2k cells of the contingency table with distribution  10,Laplace  , where k is

the number of variables (dimensions of the contingency table) and if we assume all variables are binary
(non-binary variables can be represented as multiple binary variables).

A Laplace random variable can be represented as the difference of two independent and identically

distributed exponential random variables. So if 1X and 2X are two independent variables that are

exponentially distributed with parameter a, then 1 2X X is a Laplace distribution with parameters

 10, a . In our case 1
a is 1

 , and therefore one Aggregator can add noise with distribution

exponential(a) and the other Aggregator can add noise with distribution –exponential(a) in the equations
computing the cell sizes. The original equations for each of the aggregators:

..……………………… (13)

would be modified to:

1,12 1 1| |n S c 

2,12 2 2| |n S c 

El Emam et al.: A protocol for the secure linking of registries for HPV surveillance
Appendix S1

22/23: Appendix S1- v10.docx

 1,12 1 1 0,n S c exponential   

 2,12 2 2 0,n S c exponential   
..……………………… (14)

This way each cell in the contingency table is perturbed with appropriate noise. The full contingency table
can then be dislcosed directly to the PHU. The PHU can perform as many statistics as they wish on the
table and these would all be differentially private statistics.

The problem with this approach is that the amount of noise generated when computing marginals could

be large [13]. For example, the variance of the 1-way table described by any one variable is 1 22k   [13].

Alternatively, if low order marginals are sufficient for the PHU, then an sTTP can release a set of say M
marginals. Each marginal has sensitivity 1, hence the amount of noise added to each of the released
marginals should be proportional to /M  , when n is large compared to /M  , the authors suggest
that this will yield good accuracy. However, with this approach, there will be inconsistencies between the
different marginals as noise is added independently.

Another (non-efficient) alternative introduced by [16] is to construct a synthetic database that is positive
and integral and that preserves all low order marginals up to a small error using Fourier transforms.
However, an evaluation of this mechanism using three real-life data sets concluded that it is not suitable,
especially for large and sparse tables [17].

Therefore, differential privacy at this point is not seen as providing an alternative practical basis for an
HPV surveillance protocol. Additional details on the limitations of differential privacy for applications in
healthcare are summarized elsewhere [18].

5 References
1. Sweeny L. Demonstration of a Privacy‐preserving System that Performs an Unduplicated

Accounting of Services Across Homeless Programs. 2008; Carnegie Mellon University, Data
Privacy Lab Working Paper 902 (US Government Release).

2. Benaloh J, de Marc M. One‐way accumulators: A decentralized alternative to digital signatures.
Advances in Cryptography (EUROCRYPT). 1994.

3. Huberman B, Franklin M, Hogg T. Enhancing privacy and trust in electronic communities.
Proceedings of the 1st ACM Conference on Electronic Commerce. 1999.

4. Boneh D, Franklin M. Efficient generation of shared RSA keys. Journal of the ACM (JACM), 2001;
48(4):702‐722.

5. Gilboa N. Two Party RSA Key Generation. Crypto ’99, Lecture Notes in Computer Science vol
1666. 1999.

6. Pohlig S, Hellman M. An Improved Algorithm for Computing Logrithms over GF(p) and its
Cryptographic Significance. IEEE Transactions on Information Theory, 1978; 24(1):106‐110.

7. Agrawal R, Evmievski A, Srikant R. Information sharing across private databases. Proceedings of
the 2003 ACM SIGMOD International Conference on Management of Data. 2003.

8. Samet S, Miri A. Privacy‐Preserving Bayesian Network for Horizontally Partitioned Data. The
2009 IEEE International Conference on Information Privacy, Security, Risk and Trust
(PASSAT2009). 2009: Vancouver, Canada. p. 9‐16.

9. Goldreich O. Computational Complexity. 2008: Cambridge University Press.
10. El Emam K, Hu J, Mercer J, Peyton L, Kantarcioglu M, Malin B, Buckeridge D, Samet S, Earle C. A

Secure Protocol for Protecting the Identity of Providers When Disclosing Data for Disease
Surveillance. Journal of the American Medical Informatics Association, 2011; 18(3):212‐217.

11. Kantarcioglu M, Kardes O. Privacy preserving data mining in the malicious model. International
Journal of Information and Computer Security, 2009; 2(4):353‐375.

El Emam et al.: A protocol for the secure linking of registries for HPV surveillance
Appendix S1

23/23: Appendix S1- v10.docx

12. Clifton C, Kantarcioglou M, Vaidya J, Lin X, Zhu N. Tools for privacy preserving distributed data
mining. ACM SIGKDD Explorations, 2002; 4(2):28‐34.

13. Dwork C. Differential privacy: A survey of results. Proceedings of the 5th International
Conference on Theory and Applications of Models of Computation. 2008.

14. Abowd J.M., Vilhuber L. How protective are synthetic data. Privacy in Statistical Databases.
2008.

15. Dwork C, McSherry F, Nissim K, Smith A. Calibrating noise to sensitivity in Private data analysis.
Third Theory of Cryptography Conference. 2006.

16. Barak B, Chaudhuri K, Dwork C, Kale S, McSherry F, Talwar K. Privacy, Accuracy, and Consistency
Too: A Holistic Solution to Contingency Table Release. Proceedings of the twenty‐sixth ACM
SIGMOD‐SIGACT‐SIGART symposium on Principles of database systems. 2007.

17. Fienberg S, Rinaldo A, Yang X. Differential Privacy and the Risk Utility Tradeoff for Multi‐
dimensional Contingency Tables. Privacy in Statistical Databases. 2010.

18. Dankar F, El Emam K. The Application of Differential Privacy to Health Data. The 5th
International Workshop on Privacy and Anonymity in the Information Society (PAIS). 2012.

