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Appendix	S1	
This appendix presents the detailed theory and theoretical results behind our protocol, as well as some of 
the practical considerations when deploying it in real surveillance settings. 

1 A Commutative Hash Function for Private De-duplication 
The choice of a commutative hash function is important to ensure that the linking fields, which can identify 
the patients, cannot be discovered through an attack. In this section we examine the security of a 
previous matching protocol which uses commutative hash functions, and based on that analysis describe 
some improvements which we implement in our protocol. 

A system was recently developed for the Department of Housing and Urban Development (HUD) for 
securely tracking and counting domestic violence shelter clients, and was demonstrated in a real setting 
in the state of Iowa [1]. The problem of securely tracking individuals as they visit multiple sites is similar to 
our problem of securely matching records in multiple registries. 

This HUD system is known as PrivaMix. The setup for PrivaMix is similar to ours whereby there are 
multiple shelters (registeries) sending data to a central planning office (Aggregator) to detect duplicates. 
The main difference between our protocol and PrivaMix is in what is done with the detected duplicates. In 
the PrivaMix case the duplicates are used to ensure that domestic violence clients are counted once. In 
our case duplicates indicate that a patient is in both registries and is counted as a match in a contingency 
table cell. 

PrivaMix uses the Benaloh and de Mare [2] notion of a quasi commutative hash function in the context of 
their cryptographic accumulator paradigm. Given a public base x  and the public product of two large, 

rigid, primes n pq , a quasi-commutative hash z  of a set of values 1 kyy    is computed as 

follows:  

1 1
1 1( ( , ), , ), o( ) m( dk ky y y

k kz H H xH x y y y n
  

The quasi-commutative property is illustrated by the fact that, given a set of values 1 kyy   , the 

accumulated result z is invariant under arbitrary permutation : 

(1) ( 1) ( )

(1) ( 1) ( )( ( , ), ,( od( ), ) mk ky y y

k kH x y y yz H x nH   
  


  

At first glance this may seem like a suitable construction for the purposes of secure de-duplication of 
records (i.e., private set intersection). The primary security goal of an accumulator, however, is to prevent 
false claims of set membership, and not necessarily to hide the elements themselves. Indeed, the use of 
the Benaloh/de Mare accumulator in the context of private-set intersection can lead to re-identification via 
a dictionary attack. 

1.1 A Security Analysis of the Shelter Client Tracking Protocol 
Below we demonstrate an attack on the PrivaMix de-duplication protocol using the Benaloh/de Mare 

accumulator. We will use our set-up of matching two registries. Let 1 2{ },RR R  be two registries with 

secret random values 1r  and 2r  respectively. Assume that the linking field is the social security number 

(SSN) of the patient, and 1R  and 2R  will compute the quasi-commutative hash z  of the SSN:  
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1 2
2 1 1 2, ( , )) ( , ( , )) mo( dSSNr rH r SSN H r Hz r SSN x nH r  

Both registries compute individual hashes for each patient in their respective databases, each sending 
results to an Aggregator P . De-duplication stems from the fact that a patient whom exists in both 
registries will generate the same hash as a result of the quasi-commutative property. Since the same 
hash value will appear in the lists of both registries, P  is able to determine that the patient is in both 
registries.  

A dictionary attack is possible and can be mounted independently of the bit length of the random factors 

1r  and 2r , allowing an attacker to recover the SSN. Let w  represent the total number of valid/possible 

SSNs. Without loss of generality, we consider an attempt to re-identify the SSNs contained in the partial 

hash list of registry 1R , with the adversary representing either 2R ,
 
P , or any other party able to observe 

the protocol transcript. Let registry 1R ’s patient list consist of two social security numbers, aSSN  and 

bSSN . Registry 1R  computes the hashes: 

1
1( , ) modar SSN

a aH r SS nz N x  , 

and  

1
1( , ) modbr SS

b b
NH r SS xz N n  , 

and sends them to P , who, in turn, forwards them to 2R .  

An adversary, observing az  and bz , then builds two dictionaries aD  and bD  as follows: 

1{ , }, w
a

SSNSSN
a aD z z 

,
 

and  

1{ , }, w
b

SSNSSN
b bD z z  . 

The adversary then searches for the i ad D  and the j bd D  such that i jd d , which corresponds to: 

11 mod modb ja i
r SSN SSNr SSN SSNx n x n  

The adversary can then conclude that az  is the hash of social security number jSSN , and similarly that 

bz  is the hash of social insurance number iSSN . More importantly, the bit-length of 1r  has no impact on 

computational workload of the attack.  

Finally, dictionary aD  can be used to efficiently invert additional hashes. For example, to re-identify a 

third hash 1 modCr SSN
cz x n , the attacker would simply compute 1) mod( a a cSSN r SSN SSN

c cz z x n   and 

find the i ad D   such that i cd z  , allowing the attacker to conclude cz corresponds to the hash of 

social security number iSSN  . 

A dictionary of this kind clearly undermines the security claims of this protocol, making privacy dependent 
on the size of the SSN space, instead of the key/random factor space, as was intended and would be 
expected.  
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Is this attack practical? With a social security number space of 9-digits, 302w  , building the two 

dictionaries would require at most 312 modular exponentiations. With an RSA modulus of 1024-bits, a 

contemporary CPU/GPU might reasonably be expected to compute 102 modular exponentiations per 
second, suggesting a time scale of 1-2 CPU weeks as an upper bound on building the dictionaries. A 
standard contemporary multi-core desktop computer, therefore, could compute the dictionaries on the 
order of a few days, and the task is fully parallelizable. Paying a cloud computing service, for example, 
could potentially reduce the time to hours or even minutes. Of course, once the dictionaries have been 
computed, additional re-identifications require only one modular exponentiation and look-up each. The 
dictionaries require less than 300GB of storage space, which would allow them to fit on a single hard 
drive.  

The existence of an attack against the PrivaMix protocol stems from using a cryptographic primitive—the 
Benaloh/de Mare accumulator—to fulfill a purpose that it was not designed for. In the following section, 
we describe alternative constructions that fit our private de-duplication needs, but is not susceptible to the 
dictionary attack above. 

1.2 A Secure Accumulator for Private De-duplication in the RSA 
Setting 

Our first construction relates closely to that of Huberman et al [3], which is considered secure against a 
passive adversary in the random oracle model. Given a cryptographic function ()h ,e.g., SHA-256, public 

RSA modulus n pq , secret random factors 1 2,r r , the hash of message m  is computed as follows: 

1 2
2 1 1 2' ( , ( , )) ( , ( , )) ( ) modr rz H r H r m H r H r m h m n    

The following is a sketch of the security properties: 

 Let modrc nm . It is infeasible to recover m  given c , r and n  according to the RSA 
assumption. 

 A message raised to a private random factor r  prevents a chosen plaintext attack. That is, given 

modrc nm and some 'm , it is infeasible to determine whether 'm m . 

 Cryptographic hash ( )h m  destroys potential linear relationships between messages (with high 

statistical probability), preventing guessing attacks based on the underlying homomorphic 

properties. For example, let 1 2,z z be the commutitive hashes of two SSN’s. Suppose an attacker 

guesses that 1 2,z z  corresponds to SSN’s 00000002 and 00000004 respectively. If the 

cryptographic hash ()h is not applied prior to exponentiation, it is easy to see that the attacker 

can reject this guess if 2
1 2z z . Numerous guesses of this kind can potentially lead to 

reidentification in a manner similar to the attack presented above. By applying ()h , the simple 

linear relationship between the messages is destroyed. We claim it is computationally infeasible 

to compute 1 2{ | ( ) mod ( ) mod }aa h m n h m n , and thus infeasible to conduct guessing 

attacks. 

1.3 A Secure Accumulator for Private De-duplication in the Discrete 
Log Setting 

A limitation of the previous construction is the practical difficulty of implementing a secure multi-party 
protocol to generate an RSA modulus n pq  for which the factors p  and q  are not known to any 

protocol participant. Such protocols exist but are inefficient [4, 5]. 
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An alternative construction is to work in the discrete log (DL) setting, which provides two benefits over the 
previous construction. Firstly, this setting allows the modulus to be selected publically, eliminating the 
need for a costly setup phase, and secondly, moduli in the DL setting are smaller than RSA moduli at 
equivalent security levels, allowing for more efficient evaluation.  

A construction in this setting offering the desired commutative property is based on the symmetric 

encryption scheme due Pohlig and Hellman [6]. Let q  be a multiplicative subgroup of *
p�  such that

2 1p q  . Let 1: q qe  �   be a bijective encoding function that maps positive integers into q . A 

common choice is 2( ) ( 1) mode m m p  . Given a cryptographic function ()h  and message m , the 

message holder first computes ( ))ˆ (e h mm   . The quasi-commutative hash of m  given secret random 

factors 1 2 1{ , } R qr r  � , is then defined as [7]:  

1 2
2 1 1 2 ˆ' ( , ( , )) ( , ( , )) modr rz H r H r m H r H r m m p   ..……………………… (1)

The following is a sketch of the security properties: 

 Recovering  m̂  given  'z  is equivalent to solving the discrete logarithm problem (DLP), 

 A message raised to a private random factor prevents a chosen plaintext attack (as described 
above). 

 Cryptographic hash ()h  prevents guessing attacks (as described above). For two messages 

1 2{ , },m m their encodings 1 1 2 2ˆ ˆ{ ( ( )), ( ( ))}m e h m m e h m  are uniformly distributed elements in 

q . Consider an a  such that 1 2ˆ ˆam m . Then 
1ˆ 2ˆlog ( )ma m . Therefore, any algorithm that can 

compute 1 2ˆ ˆ{ | }aa m m can also solve the discrete logarithm problem. 

We therefore use the construction in equation (1) in our protocol for matching the identifiers across the 
registries. 

2 Protocols for Other Bivariate Statistics 
This section describes the protocols for computing some common bivariate statistics on the linked data. 
For simplification mod n  will be ommited from the equations. 

We assume that we have the contingency table in Table 1 with the indicated notation. 

 

 

  Any HPV 

  -ve +ve 

E
th

n
ic

it
y Aboriginal

  

White 
 

 

11 1,11 2,11n n n  12 1,12 2,12n n n 

21 1,21 2,21n n n  22 1,22 2,22n n n 
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Table 1: Notation for computing statistics. 

 

2.1 Chi-Square Test 
The chi‐square value is given by: 

..……………………… (2)

The two Aggregators will jointly and securely compute the chi-square value, using their private values. 
Equation (2) can be converted to the following equation: 

 

To reach to the final result in equation (2), we will utilize the secure two-party addition and multiplication 
protocols. The steps are as follows: 

1. Aggregator 1 and Aggregator 2 run secure two-party multiplication for the following pairs: 

 and  such that:  

 and  such that:  

 and  such that:  

 and  such that:  

 

2. Aggregator 1 performs the following computations: 

  

  

  

  

 

3. Aggregator 2 performs the following computations: 

  

2
2 11 22 12 21 11 12 21 22

11 12 21 22 12 22 11 21

( ) ( )

( )( )( )( )

n n n n n n n n

n n n n n n n n
    


   

               
                   

2

1,11 2,11 1,22 2,22 1,12 2,12 1,21 2,21 1,11 2,11 1,12 2,12 1,21 2,21 1,22 2,222

1,11 2,11 1,12 2,12 1,21 2,21 1,22 2,22 1,12 2,12 1,22 2,22 1,11 2,11 1,21 2,21

n n n n n n n n n n n n n n n n

n n n n n n n n n n n n n n n n


           


           

1,11n 2,22n 1,11 2,22 1,1 2,1n n a a  

1,22n 2,11n 1,22 2,11 1,2 2,2n n a a  

1,12n 2,21n 1,12 2,21 1,3 2,3n n a a  

1,21n 2,12n 1,21 2,12 1,4 2,4n n a a  

1,5 1,11 1,22a n n  1,6 1,12 1,21a n n 

1,7 1,11 1,12 1,21 1,22a n n n n    1,8 1,11 1,12a n n 

1,9 1,21 1,22a n n  1,10 1,12 1,22a n n 

1,11 1,11 1,21a n n  1,12 1,1 1,2 1,3 1,4 1,5 1,6a a a a a a a     

2,5 2,11 2,22a n n  2,6 2,12 2,21a n n 
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 2,12 2,1 2,2 2,3 2,4 2,5 2,6a a a a a a a       

 

4. Aggregator 1 and Aggregator 2 run secure two-party addition for the following pairs: 

1,12a  and 2,12a  such that: 1,12 2,12 1,1 2,1a a b b    

 and  such that:  

 and  such that:  

 and  such that:  

 and  such that:  

 and  such that: 
 

 

5. Aggregator 1 computes 
2

1 1,1 1,2c b b   and 1 1,3 1,4 1,5 1,6d b b b b    , and sends these to the PHU. 

6. Aggregator 2 computes 
2

2 2,1 2,2c b b   and 2 2,3 2,4 2,5 2,6d b b b b    , and sends these to the 

PHU. 

Now 2 1 2

1 2

c c

d d
 




is computed by the PHU. Since the PHU knows the number of rows and columns, it is 

relatively straight forward to compute the degrees of freedom and the p-value from that. 

2.2 Relative Risk 
Relative risk can be computed from the contingency table as follows:  

 ..……………………… (3)

This can be converted to:  

 ..……………………… (4)

2,7 2,11 2,12 2,21 2,22a n n n n    2,8 2,11 2,12a n n 

2,9 2,21 2,22a n n  2,10 2,12 2,22a n n 

2,11 2,11 2,21a n n 

1,7a 2,7a 1,7 2,7 1,2 2,2a a b b  

1,8a 2,8a 1,8 2,8 1,3 2,3a a b b  

1,9a 2,9a 1,9 2,9 1,4 2,4a a b b  

1,10a 2,10a 1,10 2,10 1,5 2,5a a b b  

1,11a 2,11a 1,11 2,11 1,6 2,6a a b b  

 
 

11 21 22

21 11 12

n n n
r

n n n

 


 

  
  

  
  

1,11 2,11 1,21 2,21 1,22 2,22 1,11 2,11 1,21,22 2,21,22

1,21 2,21 1,11 2,11 1,12 2,12 1,21 2,21 1,11,12 2,11,12

n n n n n n n n n n
r

n n n n n n n n n n

     
 

     
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where ,  ,    and    are 

locally computed by Aggregator 1 and Aggregator 2. We then follow these steps: 

1. By applying secure two-party addition the fraction in equation (14) can be converted to separate 
and private values for the two Aggregators. Aggregator 1 and Aggregator 2 run secure two-party 
addition for their following pairs: 

 and  such that: 1,11 2,11 1,1 2,1n n a a    

 and  such that: 1,21 2,21 1,2 2,2n n a a    

 and  such that: 1,21,22 2,21,22 1,3 2,3n n a a    

 and  such that: 1,11,12 2,11,12 1,4 2,4n n a a    

Thus, the relative risk will be converted to:  

 

2. Aggregator 1 and Aggregator 2 then compute the two fractions 1

1

b

c
 and 2

2

b

c
, respectively, such 

that: 

1,1 1,21

1 1,3 1,4

a ab

c a a





 

2,1 2,22

2 2,3 2,4

a ab

c a a





 

3. Aggregator 1 and Aggregator 2 send their private values,
 1b , 1c , 2b , and 2c , to the PHU. Now, 

PHU computes 1 2

1 2

b b
r

c c





. 

2.3 Confidence Interval for Odds Ratio 
The confidence interval for odds ratio could be computed as follows:  

 ………………… (5)

 ..…………… (6)

In equation (5), the confidence interval for the log odds ratio could be computed by the exponentiation of 
the intervals. The value for z  could be derived from the standard normal table. 

Equation (6) is converted to the following equation using the Aggregators’ private shares. The PHU can 
perform square root from the final result as follows:  

1,21,22 1,21 1,22n n n  1,11,12 1,11 1,12n n n  2,21,22 2,21 2,22n n n  2,11,12 2,11 2,12n n n 

1,11n 2,11n

1,21n 2,21n

1,21,22n 2,21,22n

1,11,12n 2,11,12n

  
  

 
 

 
 

1,11 2,11 1,21,22 2,21,22 1,1 1,2 2,1 2,2

1,21 2,21 1,11,12 2,11,12 1,3 1,4 2,3 2,4

n n n n a a a a
r

n n n n a a a a

   
  

   

ln( ) ln( )ORCI z SE  

11 12 11 22

1 1 1 1
SE

n n n n
   
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    

2

1,11 2,11 1,12 2,12 1,21 2,21 1,22 2,22

1,11 2,11 1,12 2,12 1,21 2,21 1,22 2,22

1 1 1 1
SE

n n n n n n n n

A B C D

n n n n n n n n

   
   

  


   

 ..…………… (7)

in which: 

   1,12 2,12 1,21 2,21 1,22 2,22A n n n n n n     

   1,11 2,11 1,21 2,21 1,22 2,22B n n n n n n   
 

   1,11 2,11 1,12 2,12 1,22 2,22C n n n n n n   
 

   1,11 2,11 1,12 2,12 1,21 2,21D n n n n n n     

To separate the standard error, such that each of the two Aggregators computes a different value, secure 
two-party addition and multiplication are utilized in the following steps. 

1. For equation A , Aggregator 1 and Aggregator 2 run secure two-party multiplication for their 
following pairs: 

1,12 1,21n n  and 2,22n  such that:  1,12 1,21 2,22 1,1 2,1n n n a a     

1,12 1,22n n  and  2,21n such that:  1,12 1,22 2,21 1,2 2,2n n n a a     

1,21 1,22n n  and 2,12n  such that:  1,21 1,22 2,12 1,3 2,3n n n a a     

1,12n  and 2,21 2,22n n  such that:  1,12 2,21 2,22 1,4 2,4n n n a a     

1,21n and 2,12 2,22n n  such that:  1,21 2,12 2,22 1,5 2,5n n n a a     

1,22n and 2,12 2,21n n  such that:  1,22 2,12 2,21 1,6 2,6n n n a a     

2. For equations B , C , and D  Aggregator 1 and Aggregator 2 run secure two-party multiplication 

same as in the previous step to get the output shares, 1,1 1,6 1,1 1,6 1,1 1,6, , , , , , , ,b b c c d d   , and 

2,1 2,6 2,1 2,6 2,1 2,6, , , , , , , ,b b c c d d   , respectively. 

3. For the denominator of equation (7) Aggregator 1 and Aggregator 2 run secure two-party 
multiplication for their following pairs: 

1,11 1,12 1,21n n n   and 2,22n  such that:  1,11 1,12 1,21 2,22 1,1 2,1n n n n e e      
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1,11 1,12 1,22n n n   and  2,21n such that:  1,11 1,12 1,22 2,21 1,2 2,2n n n n e e      

1,11 1,21 1,22n n n   and 2,12n  such that:  1,11 1,21 1,22 2,12 1,3 2,3n n n n e e      

1,12 1,21 1,22n n n   and 2,11n  such that:  1,12 1,21 1,22 2,11 1,4 2,4n n n n e e      

1,22n and 2,11 2,12 2,21n n n   such that:  1,22 2,11 2,12 2,21 1,5 2,5n n n n e e      

1,21n and  2,11 2,12 2,22n n n  such that:  1,21 2,11 2,12 2,22 1,6 2,6n n n n e e      

1,12n  and 2,11 2,21 2,22n n n   such that:  1,12 2,11 2,21 2,22 1,7 2,7n n n n e e      

1,11n  and 2,12 2,21 2,22n n n   such that:  1,11 2,12 2,21 2,22 1,8 2,8n n n n e e      

1,11 1,12n n  and 2,21 2,22n n  such that:    1,11 1,12 2,21 2,22 1,9 2,9n n n n e e      

1,11 1,21n n  and 2,12 2,22n n  such that:    1,11 1,21 2,12 2,22 1,10 2,10n n n n e e      

1,11 1,22n n  and 2,12 2,21n n  such that:    1,11 1,22 2,12 2,21 1,11 2,11n n n n e e      

1,12 1,21n n  and 2,11 2,22n n  such that:    1,12 1,21 2,11 2,22 1,12 2,12n n n n e e      

1,12 1,22n n  and 2,11 2,21n n  such that:    1,12 1,22 2,11 2,21 1,13 2,13n n n n e e      

1,21 1,22n n  and 2,11 2,12n n  such that:    1,21 1,22 2,11 2,12 1,14 2,14n n n n e e      

4. Aggregator 1 performs the following local computations: 

1,1 1,12 1,21 1,22g n n n    

1,2 1,11 1,21 1,22g n n n  
 

1,3 1,11 1,12 1,22g n n n  
 

1,4 1,11 1,12 1,21g n n n  
 

1,5 1,11 1,12 1,21 1,22g n n n n   
 

6 6 6 6 4

1,1 1, 1, 1, 1, 1,
1 1 1 1 1

i i i i i
i i i i i

h a b c d g
    

          

14

1,2 1,5 1,
1

i
i

h g e


   

5. Aggregator 2 performs the following local computations:  

2,1 2,12 2,21 2,22g n n n     2,5 2,11 2,12 2,21 2,22g n n n n   
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2,2 2,11 2,21 2,22g n n n  
 

2,3 2,11 2,12 2,22g n n n  
 

2,4 2,11 2,12 2,21g n n n  
 

6 6 6 6 4

2,1 2, 2, 2, 2, 2,
1 1 1 1 1

i i i i i
i i i i i

h a b c d g
    

          

14

2,2 2,5 2,
1

i
i

h g e


   

Therefore, Equation (7) is converted to:  

1,1 2,12

1,2 2,2

h h
SE

h h





 

6. Aggregator 1 and Aggregator 2 perform secure two‐party addition for the following pairs:  

1,1h  and 2,1h  such that: 1,1 2,1 1 2h h i i    

1,2h  and 2,2h  such that: 1,2 2,2 1 2h h j j    

7. Aggregator 1 and Aggregator 2 send 1i , 1j , 2i , and 2j  to the PHU, respectively. The term 

1 2

1 2

i i

j j




 produces the same result as equation (7). 

2.4 Confidence Interval for Relative Risk 
The confidence interval for relative risk could be computed as follows:  

     
12 22

ln( )
11 11 12 21 21 22

lnRR

n n
CI RR z

n n n n n n
   

   
 ..…………… (8)

Equation (8) is the confidence interval of log relative risk and the confidence interval could be computed 
by taking the exponentiation of the intervals. The value of z could be derived from the standard normal 
table. By considering the separate shares of the two aggregators, the value under the square root of 
equation (8), would be: 

       
1,12 2,12 1,22 2,22

1,11 2,11 1,11 2,11 1,12 2,12 1,21 2,21 1,21 2,21 1,22 2,22

n n n n

n n n n n n n n n n n n

 


         
 ….. (9)

To compute equation (9), the two Aggregators perform the following steps. 

1. Aggregator 1 performs the following local computations: 

1,1 1,11 1,12a n n   

1,2 1,21 1,22a n n   

1,3 1,12 1,21 1,2a n n a    

1,4 1,22 1,11 1,1a n n a    

2. Aggregator 2 performs the following local computations:  
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2,1 2,11 2,12a n n 
 

2,2 2,21 2,22a n n   

2,3 2,12 2,21 2,2a n n a  
 

2,4 2,22 2,11 2,1a n n a    

3. Aggregator 1 and Aggregator 2 run secure two‐party multiplication for the following pairs:  

 1,12 1,21n n  and 2,2a  such that:  1,12 1,21 2,2 1,5 2,5n n a a a     

 1,12 1,2n a  and 2,21n  such that:  1,12 1,2 2,21 1,6 2,6n a n a a     

1,12n  and  2,21 2,2n a  such that:  1,12 2,21 2,2 1,7 2,7n n a a a     

 1,21 1,2n a  and 2,12n  such that:  1,21 1,2 2,12 1,8 2,8n a n a a     

1,21n  and  2,12 2,2n a  such that:  1,21 2,12 2,2 1,9 2,9n n a a a     

1,2a  and  2,12 2,21n n  such that:  1,2 2,12 2,21 1,10 2,10a n n a a     

 1,22 1,11n n  and 2,1a  such that:  1,22 1,11 2,1 1,11 2,11n n a a a     

 1,22 1,1n a  and 2,11n  such that:  1,22 1,1 2,11 1,12 2,12n a n a a     

1,22n  and  2,11 2,1n a  such that:  1,22 2,11 2,1 1,13 2,13n n a a a     

 1,11 1,1n a  and 2,22n  such that:  1,11 1,1 2,22 1,14 2,14n a n a a     

1,11n  and  2,22 2,1n a  such that:  1,11 2,22 2,1 1,15 2,15n n a a a     

1,1a  and  2,22 2,11n n  such that:  1,1 2,22 2,11 1,16 2,16a n n a a     

4. Aggregator 1 performs the following local computations: 

1,17 1,11 1,1 1,21 1,2a n a n a     

5. Aggregator 2 performs the following local computations:  

2,17 2,11 2,1 2,21 2,2a n a n a     

6. Aggregator 1 and Aggregator 2 run secure two‐party multiplication for the following pairs:  
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 1,11 1,21 1,1n n a   and 2,2a  such that:  1,11 1,21 1,1 2,2 1,18 2,18n n a a a a      

 1,11 1,21 1,2n n a   and 2,21n  such that:  1,11 1,21 1,2 2,21 1,19 2,19n n a n a a      

 1,11 1,1n a  and  2,21 2,2n a  such that:    1,11 1,1 2,21 2,2 1,20 2,20n a n a a a      

 1,11 1,21 1,2n n a   and 2,1a  such that:  1,11 1,21 1,2 2,1 1,21 2,21n n a a a a      

 1,11 1,21n n  and  2,1 2,2a a  such that:    1,11 1,21 2,1 2,2 1,22 2,22n n a a a a      

 1,11 1,2n a  and  2,1 2,21a n  such that:    1,11 1,2 2,1 2,21 1,23 2,23n a a n a a      

1,11n  and  2,21 2,1 2,2n a a   such that:  1,11 2,21 2,1 2,2 1,24 2,24n n a a a a      

 1,21 1,1 1,2n a a   and 2,11n  such that:  1,21 1,1 1,2 2,11 1,25 2,25n a a n a a      

 1,1 1,21a n  and  2,2 2,11a n  such that:    1,1 1,21 2,2 2,11 1,26 2,26a n a n a a      

 1,1 1,2a a  and  2,11 2,21n n  such that:    1,1 1,2 2,11 2,21 1,27 2,27a a n n a a      

1,1a  and  2,11 2,21 2,2n n a   such that:  1,1 2,11 2,21 2,2 1,28 2,28a n n a a a      

 1,21 1,2n a  and  2,11 2,1n a  such that:    1,21 1,2 2,11 2,1 1,29 2,29n a n a a a      

1,21n  and  2,11 2,1 2,2n a a   such that:  1,21 2,11 2,1 2,2 1,30 2,30n n a a a a      

1,2a  and  2,11 2,21 2,1n n a   such that:  1,2 2,11 2,21 2,1 1,31 2,31a n n a a a      

7. Aggregator 1 performs the following local computations:  

16

1 1,
3

i
i

b a


   
31

1 1,
17

i
i

c a


   

8. Aggregator 2 performs the following local computations:  

16

2 2,
3

i
i

b a


   
31

2 2,
17

i
i

c a


   

Equation (9) can be represented as:  
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1 2

1 2

b b

c c




 ..…………… (10)

9. Aggregator 1 and Aggregator 2 perform secure two‐party addition for the following pairs:  

1b  and 2b  such that: 1 2 1 2b b d d    

1c  and 2c  such that: 1 2 1 2c c g g    

10. Aggregator 1 and Aggregator 2 send 1d , 1g , 2d , and 2g  to the PHU, respectively. The term 

1 2

1 2

d d

g g




 produces equation (10). 

 

 

 

Figure 1: Each Aggregator can be incorporated within the registry to make a single node. 
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3 Security Analysis 
This protocol assumes that the Aggregators are semi-trusted. This means that they would not have 
access to any raw linking values nor sensitive values about the patients. Nor would they be able to 
determine identity from small cells because any individual Aggregator would not have the complete cell 
count for any cell in the contingency table. This also means that if an Aggregator is compromised by an 
adversary, the adversary would not be able to get access to personal health information. The only way an 
Aggregator would know the correct cell count in plaintext is if there is collusion between the two 
Aggregators. 

The registries do not share any secret keys and a compromise at one registry would not affect the other 
one.  This means that the registries do not need to trust each other. Furthermore, it is not possible for a 
registry to gain additional information about any of its patients through this protocol. For example, it is not 
possible for a registry to learn if any of its patients is in the other registry. 

Collusion between a registry and an Aggregator would not compromise the security of the protocol since 
this would still not allow either of them to know the complete cell count. Furthermore, collusion between 
an Aggregator and the PHU would not create a risk because they would not be able to reverse engineer 
the cell counts. 

The PHU does not get raw data nor the actual contingency table. By obtaining only the statistics the PHU 
can achieve its surveillance objectives without having access to patient identities. 

We use two basic protocols, secure two-party addition and multiplication. The security of these protocols 
has already been established [8]. 

Under certain circumstances it may be possible to reduce the number of nodes. If both registries are 
population registries (i.e., everyone in the population is included in these registries), then it would be 
possible to combine each registry with an aggregator into a single node as illustrated in Figure 1. In 
practice, because collusion between a registry and the Aggregator does not compromise the security of 
the protocol it would be safe to combine them into a single node. This would also reduce the number of 
nodes required to deploy the protocol by 50%. With such a deployment, no additional physical nodes are 
required to operationalize the protocol and no independent third parties are necessary (effectively, each 
registry acts as an sTTP for the other registry). 

With a combined node and population registries, a registry will not learn whether any of its patients is in 
the other registry because all patients are. If either registries has a subset of the population, then the 
registry and Aggregator cannot be combined into a single node because one of the registries would learn 
something new, at least for some of the patients. This new information would be that a patient exists in 
the other registry. 

4 Theoretical Performance Evaluation 
The challenge with secure computation protocols is that they are slower than non-secure ones. This 
makes the assessment of performance an important determinant of their practicability. 

The performance of this protocol is driven by computation time and communication time. The 
communication time will be a function of the network latency among the parties; therefore we will only 
consider the number of messages exchanged. We assume that each value sent is a message. This is a 
conservative assumption as often multiple values would be bundled together in a single message. 

4.1 Matching Phase 

We will use the notation   to denote the number of patients who match a query . 

4.1.1 Communication Costs 

The computation of the commutative hash for any single patient in a registry requires three messages. 
Therefore, the theoretical total number of messages that will be exchanged for the four queries required 

1N  1Q 



El Emam et al.: A protocol for the secure linking of registries for HPV surveillance 
Appendix S1 

 
15/23: Appendix S1- v10.docx 

for a 2x2 contingency table are: . Although in practice, each registry will 

respond with all of the hashed values per query in one message, therefore 12 messages would be 
transmitted. 

4.1.2 Computation Time 

Let  be the time it takes to perform a single commutative hash. The total computation time to get all of 

the hash values for the patients would be: . The value of  needs to be 

estimated empirically. 

The actual matching consists of two steps: (a) matching the hashed values within each Aggregator, and 
(b) those that do not match are reconciled among the two Aggregators.  

Each registry randomly sends half its hashed values to each Aggregator. Therefore Aggregator 1 will 

have on average , , , and  patient hashes, and Aggregator 2 will have a similar 

number of patient hashes for each of the cells. 

Matching the hashed values within the Aggregator (step a above) can be done quite efficiently. If the 

Aggregator is matching  values with  values, then only  comparisons are 

required if the two lists are ordered. The complexity of a merge sort is in the order of  

and  for each of the two hash value lists [9]. 

Let  denote the number of hashed values that can be matched by Aggregator 1 when it matches 

the patient hash values that are returned by  and  in step (a). This means that  and 

 hashed values will need to be reconciled with Aggregator 2. With ordered lists this can be 

performed in  and  

comparisons. 

If the value of  and  then this is the maximum number of hash values that need to 

be reconciled in step (b). On the other hand if  and  then no reconciliation 

between the two aggregators is needed. 

Because reconciliation requires a secure two party addition, this will be more computationally expensive 
than step (a). Let  be the time it takes to perform an encryption or decryption. It has been shown that 

secure two-party addition and multiplication each requires  time [8]. However, because the 
encryptions are done separately and in parallel by the two parties, the elapsed computation time would be 

. Therefore, the total computation time for the first cell would be: 

. 

 1 2 1 23 N N N N     


 1 2 1 22 N N N N       

1

2

N  2

2

N 1

2

N 2

2

N 

1

2

N  2

2

N 1 2min ,
2 2

N N  
 
 

1 1log
2 2

N N    
 

2 2log
2 2

N N    
 

1 1 , 2m  

1Q  2Q
1

1 1 , 22

N
m

 

2
1 1 , 22

N
m

 

1 2
1 1 , 2 2 1 , 2min ,

2 2

N N
m m 

   
   
 

2 1
1 1 , 2 2 1 , 2min ,

2 2

N N
m m 

   
   
 

1 1 , 2 0m    2 1 , 2 0m   

1
1 1 , 2 2

N
m 

   2
2 1 , 2 2

N
m 

  


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m m m m    

       

                 
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The general scheme described above would apply to all of the remaining cells. For each secure 2-party 
addition and multiplication two messages need to be transmitted. In practice, when matching each 
Aggregator will send all of the values that need to be matched at once rather than one by one. Therefore 
the total number of messages transmitted will be 2. 

4.2 Analysis Phase 
The time to perform the computation of statistics will be dominated by the encryption/decryption time. 
Therefore, we focus on those as the main performance measurements.  

The computation of the chi-square value requires a fixed  computation time for each cell. The 

computation of odds ratio requires a fixed  computation time per cell. The relative risk value 

requires a fixed  computation time as well. As can be seen, the actual computation time is not 
related to the size of the data set. 

The total number of messages that would need to be transmitted is 20 for the chi-square test, and 8 for 
the odds ratio and relative risk calculations per cell.  

4.3 Deployment 

4.3.1 Deployment Requirements 

When deploying our protocol, a number of issues need to be addressed: 

 Interactive Use. The protocol we have presented assumes that the PHU would interactively send 
queries to the registries. Therefore, the registries need to be available continuously to respond to 
such queries. 

 Unique identifiers. Since the protocol assumes deterministic matching, a reliable set of unique 
identifiers or linking variables are required.  

 Certificate authority. The basic protocol does not have a requirement for a centralized certificate 
issuing authority. However, in practice such an authority would be needed to implement digital 
signatures and secure communication among the parties. Current commercially available 
certificate authorities can be used for that purpose. 

 Authentication and digital signatures. Each registry would need to set-up appropriate 
credentials for the other registries that it wishes to collaborate with. In addition, digital signatures 
would be set-up so that the messages among the parties can be signed. A discussion of digital 
signatures in the context of secure multi-party computation protocols for public health is provided 
elsewhere [10]. 

While we described only three statistics on a contingency table, by following the same principles that we 
describe here, one can extend this to other types of statistics on contingency tables. 

4.3.2 Audit Mechanism 

With a 2x2 contingency table there are four unknown values. If the PHU obtains four statistics on the 
same contingency table then it would be possible to analytically reverse engineer the values of each of 
the cells in the table. To mitigate against such a risk an automated audit mechanism needs to be put in 
place. This would allow a maximum of 1C   statistics on the same contingency table, where C  is the 
number of cells in the table. A contingency table is characterized by the response categories in each of its 
dimensions and the date range. This assumes that the data at the registries is static. If the data at the 
registries is dynamic then the limit would be 1C   for each data snapshot. Such an audit mechanism 
would not protect against collusion among users. For example, one user may request the maximum of 
three statistics and another user may request the remaining statistic, and then together they can compute 
the cell values.  

10 2
4 2

4 2
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An audit mechanism does not address two other scenarios: (a) collusion among PHUs who share 
statistics on the same table where each PHU is below the number of statistics threshold, and (b) PHUs 
that publish statistics. Risks from collusion can be addressed through data sharing agreements with the 
PHUs. Active collusion would be a deliberate violation of a contract and cannot happen inadvertently. 
Publishing statistics would also be prohibited by such an agreement. 

4.3.3 Dishonest Parties 

Our model assumed that the parties are semi-trusted. With the deployment scenario we described above 
this requires a registry to be semi-trusted by the other registry. In situations where such trust may not be 
warranted or the registry wishes to establish stronger guarantees, one can employ zero-knowledge proofs 
to extend the current protocol, and this would protect against malicious parties [11].  

4.3.4 PHU and Registry Complexity 

The proposed protocol will only be implemented in practice if it is simple to use by the PHU. Most of the 
complexity in the protocol would be embedded within the software that implements the registry and 
Aggregator functions. For registries they would only need to set-up the hardware and software, connect 
that to the source database(s), indicate which fields they are willing to share, and configure the accounts 
for the other registries that they are willing to share data with. Once the software set-up is complete, the 
secure linking and computation of statistics is transparent to the registry and does not require further 
interventions. 

 

 

Figure 2: A screen shot showing the interface that the PHU would see based on our pilot 
implementation. 

 

As an illustration, the end-user would interact with the system through an interface shown in Figure 2. 
Here the PHU selects the variables in each registry they have access to and the response categories to 
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be included in the contingency table. The date interval and the particular statistics requested would also 
be selected.  

4.4 Zero Cells in Contingency Table 
If any of the cells have a zero value, then the result of secure two-party addition will be zero. This would 
reveal the existence of a zero cell in the contingency table during the computation of statistics to one of 
the Aggregators and subsequently to the PHU. It is not uncommon for secure computation protocols to 
reveal a zero input to one of the two parties [12]. However, in our case the exposure of a zero cell would 
compromise our requirements. 

To address this problem it is necessary to add a small constant value to each cell sum, such as 115 10 . 
The original equations in the main paper for each of the aggregators were: 

 

 

..……………………… (11)

would be modified to:  

11
1,12 1 1 5 10n S c      

11
2,12 2 2 5 10n S c      

..……………………… (12)

Because all of the computations thus far have been on integers, we would need to change the scale for 
the two-party addition and multiplication sub-protocols to work on real numbers instead to accommodate 
the addition of a small fraction to the cell counts. The modified building block protocols for real numbers 
are described below.  

4.4.1 Protocols with Scaling 

Scaling has to be utilized in these cases. Following are the ways we follow in the two main building 
blocks, secure addition and multiplication, and the technique is the same in other building blocks. Here 
without loss of generality we work on two-party case and general case would be the same. 

4.4.1.1 Secure Two-Party Addition 

Suppose there are two inputs 1a and 2a  (real numbers) owned by the two parties 1P  and 2P , 

respectively. The parties agree on an integer number, 1 2s s s  , as a scale to convert their numbers 

into integers. Therefore, each party would do the scaling as follows:  

1 1 10sb a    2 2 10sb a   

Then they run the secure addition protocol to obtain two private outputs 1c and 2c , such that:  

1 2 1 2b b c c    

Now we have:  

 1 2 1 2 10sc c a a     

1,12 1 1| |n S c 

2,12 2 2| |n S c 
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Therefore, the final outputs, 1d and 2d , would be:  

1

1
1 10s

c
d   

2

2
2 10s

c
d   

Using scaling the final equation is:  

1 2 1 2a a d d    

4.4.1.2 Secure Two-Party Multiplication 

Suppose there are two inputs 1a and 2a (real numbers) owned by the two parties 1P  and 2P , 

respectively. The parties agree on an integer number, s , as a scale to convert their numbers to integer. 
Therefore, each party do the scaling as follows:  

1 1 10sb a    2 2 10sb a   

Then they run the secure multiplication protocol to obtain two private outputs 1c and 2c , such that:  

1 2 1 2b b c c    

Now we have: 

   1 2 1 210 10s sc c a a      

Therefore, the final outputs, 1d and 2d , would be:  

1
1 210 s

c
d    2

2 210 s

c
d   

Using scaling the final equation is:  

1 2 1 2a a d d    

4.4.2 Evaluation of Modified Building Blocks 

In practice, the addition of a small constant to the cell counts will result in a negligible effect on the 
computation of statistics. To illustrate the size of this error we computed the effect on the chi-square test 
for sizes of tables up to 60 cells by 60 cells using randomly generated data ranging from 68,000 to 98,000 
individuals in the table. The mean error and mean square error are shown in Table 2. In Table 3 we show 
a set of cases where cell counts are limited to only 5. Here the constant error represents a larger 
proportion of the count than for cells with large numbers. As can be seen, the error is quite small and 
would have negligible impact on the analysis results. We obtained similar results for the other statistics. 
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Tables size  Average difference MSE 
4x4  10-10 10-21 

10x10  10-8 10-19 
20x20  10-7 10-17 
30x30  10-6 10-16 
60x60  10-5 10-14 

 

Table 2: Accuracy of chi-square statistic with randomly generated data and a small constant 
added to cell counts for 100 iterations. MSE is the mean square error. 

 

 

Tables size  Average difference MSE 
4x4  10-9 10-20 

10x10  10-8 10-19 
20x20  10-7 10-17 
30x30  10-6 10-17 
60x60  10-6 10-15 

 

Table 3: Accuracy of chi-square statistic with randomly generated data and a small constant 
added to small cell counts (a maximum of 5 in each cell) for 100 iterations. MSE is the mean 

square error. 
 

4.5 Small Cells and Statistical Testing 
One general issue regarding the stability of the final results for statistics using the contingency table is 
when the values of one or more cells are very small, say 5 or less. In this situation the chi-square will 
have reduced accuracy because of the small samples being used for estimation. The Aggregator, using 
their private input shares for the cells, can play a critical function in detecting this and alert the PHU. To 
do this, an Aggregator can run secure comparison on their private shares for each cell. Secure 
comparison would compare the count with a specific threshold and detect the occurrence of this condition 

without knowing each other’s private values for the cells. Suppose, the Aggregators want to compare  

with the constant threshold number , and each of them has her own private share as follows: 

 

They can run the following steps for the secure comparison: 

1. Aggregator 1 encrypts her private value, , and sends  to Aggregator 2. 

2. Aggregator 2 generates a private random number, , encrypts that value and the constant 

value, , and sends        2

1,11 2,11

r
E n E n E K    to Aggregator 1. 

3. Aggregator 1 decrypts the received value and compares it with zero. If the decrypted value is 

less than zero, it means that 11n K . 

11n

K

11 1,11 2,11n n n 

1,11n  1,11E n

2r

K
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This sub-protocol will be performed by the Aggregators for their private values of each cell. If small cells 
are detected then they can inform the PHU as part of providing the results. 

4.6 Differential Privacy: An Alternative Privacy-Preserving 
Mechanism? 

A possible alternative approach that we considered for the disclosure of statistics for the purpose of HPV 
surveillance is differential privacy [13]. Below we first briefly describe differential privacy, how it can be 
used within our protocol, and then explain why it would not be appropriate in this context. 

Differential privacy requires that the answer to any query be “probabilistically indistinguishable” with or 
without a particular row in the dataset. In other words, For any two datasets D  and D , drawn from a 
population  , that differ in exactly one record, if fK  is a randomized function used to respond to an 

arbitrary query f , then fK  gives  -differential privacy if Pr[ ( ) ] e Pr[ ( ') ]f fK D s K D s   . Some 

authors interpret this as: “knowledge gain ratio from one data set over the other” [14]. Differential privacy 

requires that the knowledge gain is less than e . Even if an individual removed her data from the data 
set, no output would become significantly more or less likely [13]. The parameter   is public. Although 

there is no principled basis for choosing  , values are typically set at 0.01, or 0.1, and sometimes ln 2 or 
ln 3 . 

In order to satisfy differential privacy in a query response situation, it has been common to use Laplace 
distributed noise [15]: if r  is the correct answer to a query f  on a dataset D : ( )f D r , then a 

differentially private mechanism would output the response r y , where y  is the noise drawn at random 

from a Laplace distribution with mean 0 and scale /f  . f  represents the maximum value for 

|| ( ) ( ') ||f D f D  for all , 'D D  differing in one row. In other words, it is the maximum difference in 

the values of ( )f D  when exactly one row of data is changed. f  is the global sensitivity of the query 

f  over domain  , it is independent of the dataset and one must consider all datasets D  to 

determine its value. 

If we treat a contingency table as a histogram, its sensitivity is 1 (since the addition or removal of any 
database row affects the counts in one location by at most 1). Hence we can add independently 

generated noise to the 2k  cells of the contingency table with distribution  10,Laplace  , where k  is 

the number of variables (dimensions of the contingency table) and if we assume all variables are binary 
(non-binary variables can be represented as multiple binary variables). 

A Laplace random variable can be represented as the difference of two independent and identically 

distributed exponential random variables. So if 1X  and 2X  are two independent variables that are 

exponentially distributed with parameter a, then 1 2X X  is a Laplace distribution with parameters 

 10, a . In our case 1
a  is 1

 , and therefore one Aggregator can add noise with distribution 

exponential(a) and the other Aggregator can add noise with distribution –exponential(a) in the equations 
computing the cell sizes. The original equations for each of the aggregators: 

 

 

..……………………… (13)

would be modified to:  

1,12 1 1| |n S c 

2,12 2 2| |n S c 
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 1,12 1 1 0,n S c exponential     

 2,12 2 2 0,n S c exponential     
..……………………… (14)

This way each cell in the contingency table is perturbed with appropriate noise. The full contingency table 
can then be dislcosed directly to the PHU. The PHU can perform as many statistics as they wish on the 
table and these would all be differentially private statistics. 

The problem with this approach is that the amount of noise generated when computing marginals could 

be large [13]. For example, the variance of the 1-way table described by any one variable is 1 22k   [13]. 

Alternatively, if low order marginals are sufficient for the PHU, then an sTTP can release a set of say M  
marginals. Each marginal has sensitivity 1, hence the amount of noise added to each of the released 
marginals should be proportional to /M  , when n  is large compared to /M  , the authors suggest 
that this will yield good accuracy. However, with this approach, there will be inconsistencies between the 
different marginals as noise is added independently. 

Another (non-efficient) alternative introduced by [16] is to construct a synthetic database that is positive 
and integral and that preserves all low order marginals up to a small error  using Fourier transforms. 
However, an evaluation of this mechanism using three real-life data sets concluded that it is not suitable, 
especially for large and sparse tables [17]. 

Therefore, differential privacy at this point is not seen as providing an alternative practical basis for an 
HPV surveillance protocol. Additional details on the limitations of differential privacy for applications in 
healthcare are summarized elsewhere [18]. 
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