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Model analysis of one-virus model

dVp

dt
= rpVp

(
1− Vp

K

)
− µpVpTp, (1)

de

dt
= πVp − δe, (2)

dTp

dt
=

αpVpTp

1 + σe
− dTp. (3)

Proposition 1. Each component of the solution of system (1-3), subject to 0 ≤ Vp(0) ≤ K, e(0) ≥
0, Tp(0) ≥ 0 remains bounded and non-negative for all t > 0.

Proof. Because the system (1-3) is locally Lipschitz at t = 0, its solution exists on the interval [0, b) for some
number b > 0.

Suppose that there exists t1 ∈ (0, b) such that e(t1) = 0, and Vp(t) > 0, e(t) > 0, Tp(t) > 0 for 0 < t < t1.
For all t ∈ [0, t1] we have

de

dt
= πVp − δe ≥ −δe.

The exponential solution is a lower bound of e(t), and e(t1) ≥ e(0)e−δt1 > 0, which contradicts the e(t1) = 0
assumption.

Similarly, assume there exists t1 ∈ (0, b) such that Tp(t1) = 0, and Vp(t) > 0, e(t) > 0, Tp(t) > 0 for
0 < t < t1. For all t ∈ [0, t1] we have

dTp

dt
=

αpVpTp

1 + σe
− dTp ≥ −dTp.

The exponential solution is a lower bound of Tp(t), and Tp(t1) ≥ Tp(0)e
−dt1 > 0, which contradicts the

Tp(t1) = 0 assumption.

Finally, assume there exists t1 ∈ (0, b) such that Vp(t1) = 0, and Vp(t) > 0, e(t) > 0, Tp(t) > 0 for
0 < t < t1. For all t ∈ [0, t1] we have

dVp

dt
= rpVp

(
1− Vp

K

)
− µpTpVp ≥ −µpTpVp.

Then Vp(t1) ≥ Vp(0)e
−µ

∫ t1
0 Tp(t)dt > 0, which contradicts the Vp(t1) = 0 assumption.

We can now verify that the solutions are bounded. Since

dVp

dt
= rpVp

(
1− Vp

K

)
− µpTpVp ≤ rpVp

(
1− Vp

K

)
,

we have that Vp is bounded above by a solution to the logistic equation, with initial condition Vp(0) ≤ K.
We conclude that Vp(t) ≤ K for all t ∈ [0, b).
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Since Vp(t) ≤ K,
de

dt
= πVp − δe ≤ πK − δe

and e(t) ≤ Kπ
δ +

(
e(0)− Kπ

δ

)
e−δt ≤ max{e(0), Kπ

δ } for t ≥ 0.

Finally, let z = αpVp + µpTp. For Vp(t) ≤ K and e(t) ≥ 0,

dz

dt
=

αpµpVpTp

1 + σe
− αpµpVpTp + rpαpVp

(
1− Vp

K

)
− dµpTp ≤ (rp + d)αpK − dz.

Therefore z(t) ≤ (rp+d)αp

d K +
(
z(0)− (rp+d)αp

d K
)
e−dt ≤ max{z(0), (rp+d)αp

d K}. Since Vp(t) and z(t) are

bounded it follows that Tp(t) is bounded on [0, b).

System (1-3) together with initial conditions 0 ≤ Vp(0) ≤ K, e(0) ≥ 0, Tp(0) ≥ 0 has positive and
bounded solutions for all t ∈ [0, b). This implies that b = ∞.

System (1-3) has three steady states: a biologically irrelevant steady state, S0 = (0, 0, 0), a state rep-
resenting immune tolerance, ST = (Ṽp, ẽ, T̃p) =

(
K, Kπ

δ , 0
)
, and a state representing immune activation,

SL = (V̄p, ē, T̄p) =
(
Ω, πΩ

δ ,
rp
µp

(
1− Ω

K

))
; where Ω = dδ

αpδ−dσπ .

Proposition 2. (1-3) exhibits the following dynamics.

1. S0 is always unstable.

2. If Ω < 0 or Ω > K then ST is asymptotically stable and SL does not exist.

3. If 0 < Ω < K then ST is unstable and SL exists and is asymptotically stable.

Proof. 1. and 2. The stability of S0 and ST follow from standard linearization techniques.
3. The proof of the stability of SL is as follows.

J(V̄p, ē, T̄p)|SL =

 − rpV̄p

K 0 −µpV̄p

π −δ 0
αpT̄p

1+σē −αpσT̄pV̄p

(1+σē)2 0

 .

The eigenvalues of J satisfy

λ3 + a1λ
2 + a2λ+ a3 = 0,

where

a1 = δ +
rpV̄p

K
,

a2 =
δrpV̄p

K
+

αpµpT̄pV̄p

1 + σē
,

a3 =
δαpµpT̄pV̄p

(1 + σē)2
.

Clearly a1, a2, a3 > 0 when SL exists. Furthermore,

a1a2 =

(
δ +

rpV̄p

K

)(
δrpV̄p

K
+

αpµpT̄pV̄p

1 + σē

)
>

δαpµpT̄pV̄p

1 + σē

≥ δαpµpT̄pV̄p

(1 + σē)2
= a3.

By Routh-Hurwitz criteria, we determine that SL is locally asymptotically stable when it exists.
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Model analysis of mutation model

dVp

dt
= rpVp

(
(1− ϕ)− Vp + Vn

K

)
− µpVpTp, (4)

dVn

dt
= rpVn

(
1− Vp + Vn

K

)
+ rpϕVp − µpVnTn, (5)

de

dt
= πVp − δe, (6)

dTp

dt
=

αpVpTp

1 + σe
− dTp, (7)

dTn

dt
=

αnVnTn

1 + σe
− dTn, (8)

The mutation model has several steady states. The first one is biologically irrelevant, S0 = (0, 0, 0, 0, 0). The
tolerance state of (4-8) is depicted by the absence of T-cell induced killing of Vn when Vp is lost completely,
STn = (0,K, 0, 0, 0).

There are four steady-states that represent immune activation. The first one represents immune activa-
tion against Vp but not Vn,

SL1 =
(
ϑ̄1, ω̄1, ē1, τ̄1, σ̄1

)
=
(
Ω, ω̄1,

π

δ
Ω, τ̄1, 0

)
,

where

1

K
ω̄2
1 +

(
Ω

K
− 1

)
ω̄1 − Ωϕ = 0, (9)

and

τ̄1 =
rp
µp

(
1− ϕ− Ω+ ω̄1

K

)
. (10)

SL1 exists when 0 < Ω < K and ϕ < 1− Ω+ω̄1

K .

There are two steady states representing competent T-cell response to Vn but not Vp: one corresponding
to small and intermediate percentage of Vp mutations,

SL2 =
(
ϑ̄2, ω̄2, ē2, τ̄2, σ̄2

)
=

((
1− ϕ− d

Kαn

)
αnδK

αnδ + dσπ
, (1− ϕ)K − ϑ̄2,

π

δ
ϑ̄2, 0,

rpϕ

µp

(
ϑ̄2

ω̄2
+ 1

))
which exists when ϕ < 1− d

Kαn
; and one corresponding to large percentage of mutations leading to complete

removal of Vp,

SL3 =
(
ϑ̄3, ω̄3, ē3, τ̄3, σ̄3

)
=

(
0,

d

αn
, 0, 0,

rp
µp

(
1− d

αnK

))
,

which exists when K > d
αn

.
The last steady state corresponds to T-cells response to both viruses types,

SL4 =
(
ϑ̄4, ω̄4, ē4, τ̄4, σ̄4

)
=

(
Ω,

αp

αn
Ω,

π

δ
Ω, τ̄4, σ̄4

)
,
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where

τ̄4 =
rp
µp

(
1− ϕ− αp + αn

αn

Ω

K

)
, (11)

σ̄4 =
rp
µp

(
1 + ϕ

αn

αp
− αp + αn

αn

Ω

K

)
. (12)

(13)

This state exist if
αp

αn

(
αp+αn

αn

Ω
K − 1

)
< ϕ < 1− αp+αn

αn

Ω
K . Note that the inequality fails for Ω > K. Therefore,

SL4 doest not exist when 0 > Ω > K.

Proposition 3. When K < d/αn the steady state STn is locally asymptotically stable and SL2, SL3 do not
exist.

Proof. The stability results follow from standard linearization techniques.

Proposition 4. If Ω = dδ
αpδ−dπσ > K, then ST is locally asymptotically stable in the system (1-3) and STn ,

SL1 and SL4 do not exist in the system (4-8).

Proof. This result follows from Proposition 2 and the existence of ST and SL1.

Proposition 5. If 1− Ω
K

(
1 +

αp

αn

)
< ϕ < 1− d

Kαn
, SL2 is locally asymptotically stable.

Proof. The Jacobian for SL2 is

JSL2
=


−rp

ϑ̄2

K −rp
ϑ̄2

K 0 −µpϑ̄2 0

rpϕ− rp
ω̄2

K −rpϕ
ϑ̄2

ω̄2
− rp

ω̄2

K 0 0 −µpω̄2

π 0 −δ 0 0

0 0 0
αpϑ̄2

1+σē2
− d 0

0 αnσ̄2

1+σē2
−αnσ

ω̄2σ̄2

(1+σē2)2
0 0

 .

Notice that λ1 =
αpϑ̄2

1+σē2
− d =

(
ϑ̄2

Ω − 1
)
d. If ϕ > 1 − Ω

K

(
1 +

αp

αn

)
then λ1 < 0. λ2,3,4,5 solve the following

polynomial.

λ4 + Aλ3 +Bλ2 + Cλ+D = 0,

A = rpϕ
ϑ̄2

ω̄2
+ rp(1− ϕ) + δ,

B = rpδ(1− ϕ) + r2pϕ(1− ϕ)
ϑ̄2

ω̄2
+ rpdϕ(1 +

ϑ̄2

ω̄2
) + rpϕδ

ϑ̄2

ω̄2
,

C = rpδdϕ(1 +
ϑ̄2

ω̄2
) + r2pϕ(1− ϕ)(d+ δ)

ϑ̄2

ω̄2
,

D = r2pdϕ(ϑ̄2 + ω̄2)ϑ̄2
αnδ + dσπ

αnω̄2K
.

Since A > 0, D > 0, AB−C > 0, and C(AB−C)−A2D > 0 by Routh Hurwitz condition we have that the

polynomial has solutions with negative real parts. Therefore, when 1− Ω
K

(
1 +

αp

αn

)
< ϕ < 1− d

Kαn
, SL2 is

locally asymptotically stable.

Proposition 6. If ϕ > 1− d
Kαn

and d
αn

< K, SL3 is locally asymptotically stable.
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Proof. The Jacobian for SL3 is

JSL3
=


rp(1− ϕ)− rp

K
d
αn

0 0 0 0

rpϕ− rp
K

d
αn

− rp
K

d
αn

0 0 −µp
d
αn

π 0 −δ 0 0
0 0 0 −d 0

0
rpαn

µp

(
1− d

Kαn

)
−σdrp

µp

(
1− d

Kαn

)
0 0

 .

Notice that λ1 = rp(1− ϕ)− rp
K

d
αn

, λ2 = −δ, and λ3 = −d. When ϕ > 1− d
Kαn

and d
αn

< K, λ1 < 0. λ4,5

are the eigenvalues of (
− rp

K
d
αn

−dµp

αn

rpαn

µp

(
1− d

Kαn

)
0

)
.

Since

tr = −rp
K

d

αn
< 0,

det = rpd

(
1− d

Kαn

)
> 0,

when Kαn > d, the eigenvalues λ4,5 are always negative.
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