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Model analysis of one-virus model
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Proposition 1. Each component of the solution of system (1-3), subject to 0 < V,(0) < K, e(0) >
0, T,(0) > 0 remains bounded and non-negative for all t > 0.

Proof. Because the system (1-3) is locally Lipschitz at ¢ = 0, its solution exists on the interval [0,b) for some
number b > 0.

Suppose that there exists ¢; € (0,b) such that e(¢1) = 0, and V,(¢) > 0, e(t) > 0, T,(t) > 0 for 0 < ¢ < t1.

For all ¢t € [0,t1] we have
de

dt
The exponential solution is a lower bound of e(t), and e(t;) > e(0)e~%" > 0, which contradicts the e(t;) = 0
assumption.

=nV, — de > —de.

Similarly, assume there exists t; € (0,b) such that T,,(¢t1) = 0, and V,(¢t) > 0, e(t) > 0, T,(¢) > 0 for
0 <t<ty. Foralltel0,t;] we have
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The exponential solution is a lower bound of T)(t), and T),(t;) > T,(0)e~%1 > 0, which contradicts the
T,(t1) = 0 assumption.

Finally, assume there exists ¢t; € (0,b) such that V,(¢t1) = 0, and V,(¢) > 0, e(t) > 0, T,(t) > 0 for
0<t<ty. Foralltel0,¢] we have
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Then V,(t1) > V,(0)e* Jo' To(®)dt - 0, which contradicts the V,(t1) = 0 assumption.

We can now verify that the solutions are bounded. Since

dV, V, V,
ditp =1pVp <1 - Ié)) — ppTpVp < 1pVp (1 - ;) )

we have that V, is bounded above by a solution to the logistic equation, with initial condition V,(0) < K.
We conclude that V),(t) < K for all t € [0,).



Since V,(t) < K,
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and e(t) < &% + (e(0) — £X) 7% < max{e(0), &=} for t > 0.

Finally, let z = o, V}, + ppTp. For V,,(t) < K and e(t) > 0,
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Therefore z(t) < %K + (z(O) - %K) e~ < max{z(0), %K}. Since V,(t) and z(t) are
bounded it follows that T),(¢) is bounded on [0, ).

System (1-3) together with initial conditions 0 < V,(0) < K, e(0) > 0, T,,(0) > 0 has positive and

bounded solutions for all ¢ € [0,b). This implies that b = co. O
System (1-3) has three steady states: a biologically irrelevant steady state, So = (0,0,0), a state rep-
resenting immune tolerance, Sy = (V;,€,7,) = (K,%%,0), and a state representing immune activation,
s 70 V). __ ds
SL = (%7€,Tp) = (Q, et % (1 — ?)), where Q = m.

Proposition 2. (1-3) exhibits the following dynamics.
1. Sy is always unstable.
2. If Q<0 or Q> K then St is asymptotically stable and Sy, does not exist.
3. If 0 < Q < K then St is unstable and Sy, exists and is asymptotically stable.

Proof. 1. and 2. The stability of Sy and St follow from standard linearization techniques.
3. The proof of the stability of Sy, is as follows.
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Clearly aq,as,a3 > 0 when Sy, exists. Furthermore,
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By Routh-Hurwitz criteria, we determine that Sy, is locally asymptotically stable when it exists. O
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Model analysis of mutation model
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The mutation model has several steady states. The first one is biologically irrelevant, Sy = (0,0,0,0,0). The
tolerance state of (4-8) is depicted by the absence of T-cell induced killing of V;, when V, is lost completely,
St, =(0,K,0,0,0).

There are four steady-states that represent immune activation. The first one represents immune activa-
tion against V,, but not V,,,
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St existswhen0<Q<Kand¢<1—%.

There are two steady states representing competent T-cell response to V;, but not V,,: one corresponding
to small and intermediate percentage of V}, mutations,
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which exists when ¢ < 1 — %; and one corresponding to large percentage of mutations leading to complete
removal of Vj,,
d
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which exists when K > ai.
The last steady state corresponds to T-cells response to both viruses types,
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This state exist if o (a"'m” e 1) <¢p<1-— ap;a“ 2. Note that the inequality fails for Q > K. Therefore,
Sr4 doest not exist when 0 > Q > K.

Proposition 3. When K < d/«, the steady state St, is locally asymptotically stable and Sz, Srs do not
ezist.

Proof. The stability results follow from standard linearization techniques. O

Proposition 4. If Q) = m > K, then St is locally asymptotically stable in the system (1-3) and St ,
Sp1 and Spy do not exist in the system (4-8).

Proof. This result follows from Proposition 2 and the existence of Sy and Sp. O]

Proposition 5. If1— 3= (1 + ) <p<1l-— Stpo is locally asymptotically stable.
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Notice that A; = 2272 _ g — (ﬁ _ )d fop>1-2 (1 + ) then A; < 0. Aa3.45 solve the following
polynomial.
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Since A >0, D >0, AB—C >0, and C(AB —C) — A2D > 0 by Routh Hurwitz condition we have that the
polynomial has solutions with negative real parts. Therefore, when 1 — 3 (1 + %) <p<1l-— %, Sro is
locally asymptotically stable.

Proposition 6. If¢p > 1 — % and ai < K, Sps is locally asymptotically stable.



Proof. The Jacobian for Sps is
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when Ka,, > d, the eigenvalues A\ 5 are always negative. O
References



