Supplementary information

Supplementary methods, Supplementary References, Supplementary Figures S1 to S4 and Supplementary Table S1 (strain list)

Supplementary methods

Figure S1. FISH was performed on paraformaldehyde fixed cells as described [S1]. Cosmids were used as FISH probes. Chromosome 1 cosmids were obtained from the Sanger Sanger (U. K.) and used as in [S1]. Chromosome 2 cosmids used as probes were c1228 (cen2 proximal) and c3F8 (left arm) [S2]. Distances between FISH signals were measured from maximum projections of images created from z series of eight 0.4-µm steps using MetaMorph software.

Figure S2 and S3. Pds5-GFP was detected using anti-GFP polyclonal antibodies (A11122, $2\mu g/\mu l$) on nuclear spreads (D800) and by ChiP ($2\mu g/ChiP$).

Figure S4. Cells were arrested in G1 by the overexpression of a C-terminal fragment of the Res1 protein as described [S3]. To estimate Rad21 half-life on chromatin, individual data sets were fitted to a single exponential function using GraphPadPrism 4 (GraphPad Software).

Supplementary References

S1. Bernard P, Maure JF, Partridge JF, Genier S, Javerzat JP, Allshire RC (2001)
Requirement of heterochromatin for cohesion at centromeres. Science 294: 2539-2542.
S2. Bernard P, Drogat J, Maure JF, Dheur S, Vaur S, Genier S, Javerzat JP (2006) A
screen for cohesion mutants uncovers Ssl3, the fission yeast counterpart of the cohesin
loading factor Scc4. Curr Biol 16: 875-881

S3. Bernard P, Schmidt CK, Vaur S, Dheur S, Drogat J, Genier S, Ekwall K, Uhlmann F, Javerzat JP (2008) Cell-cycle regulation of cohesin stability along fission yeast chromosomes. EMBO J 27: 111-121

Figure S1. Loss of sister-chromatid cohesion in *pds5*⊿ arrested G2 cells.

(A) Schematics showing the position of the FISH probes along chromosomes 1 and 2. Distances are in megabases. (B) FISH on G2 arrested cells. Cycling cells at 25°C (~80% G2) were shifted to 37°C for 3 hours and processed for FISH with the indicated cosmid probes. FISH signals appear in green, DAPI-stained nuclei in grey. Bar = 2µm. In an otherwise wt or *mis4-367* background the 2 FISH signals are co-localized or closely apposed to each other. By contrast the two FISH signals are separated in *pds5*^{Δ} cells. (C) The distance between the 2 FISH signals was measured for 100-150 nuclei per sample. The distribution is similar in wt and *mis4-367* cells with most cells showing closely apposed (<0.4µm) signals. By contrast, most *pds5*^{Δ} cells show widely separated (>0.4µm) FISH signals.

Figure S2. Pds5 co-localizes with the stable fraction of Rad21 on replicated chromosomes. (A) A fraction of Pds5 remains bound to G2 chromosomes after inactivation of the cohesin loader. Cycling *cdc25-22 mis4-367 rad21-PK pds5-GFP* cells were shifted to 37°C for 3 hours. Chromatinbound Rad21-PK and Pds5-GFP were quantified from nuclear spreads before and after the temperature shift from 70-80 nuclei per sample. Error bar = 95% confidence interval of the mean with α =0.05. (B) Images of nuclear spreads after the 3 hours shift at 37°C showing that Pds5-GFP and Rad21-PK dots are co-localized. Bar = 2µm. (C) ChiP assay after the 3 hours shift at 37°C showing that Pds5-GFP and Rad21-PK display similar binding patterns. Error bar = SD from 3 ChiPs.

Figure S3. Pds5 and Rad21 binding to chromosomes in wpl1 Δ and eso1 Δ wpl1 Δ .

Cycling cells at 25°C were shifted to 37°C for 3 hours to prevent further cohesin deposition (*mis4-367*) while *cdc25-22* prevented entry into mitosis. (**A**) Images of Pds5-GFP immunofluorescence on nuclear spreads from cells collected before and after 3 hours at 37°C. Chromatin was counterstained with DAPI. Bar = 2µm. (**B**) Quantification of chromatin-bound Pds5. Pds5-GFP fluorescence intensity was measured for 50-100 nuclei for each sample. Error bar = 95% confidence interval of the mean with α =0.05. (**C**) ChIP assays showing that Pds5 and the stable fraction of Rad21 are found at the same chromosomal locations. Cells were collected 3 hours after the shift at 37°C and processed for Pds5-GFP ChiP (mean from 2 ChiPs) and Rad21-PK ChiP (error bar = SD from 4 ChiPs).

Figure S4. Wpl1 and Pds5 promote Rad21 release from G1 chromatin

(A) Steady state amount of chromatin-bound Rad21-PK in G1 arrested *mis4*⁺ cells. Cells were arrested in G1 by the overexpression of the C-terminal domain of Res1 (*nmt-res1Cter* [S3]). Nuclear spreads were made and chromatin-bound Rad21-PK was detected by indirect immunofluorescence. Fluorescence intensity was measured for 50-100 nuclei per sample. Error bar = 95% confidence interval of the mean with α =0.05.(**B**) Flow cytometry analysis shows that cells arrested with a 1C DNA content. (**C**) Kinetics of Rad21 removal from G1 chromatin. Cells bearing the *mis4-367* mutation were arrested in G1 at 25°C as in (A) and then shifted to 36.5°C to prevent further cohesin loading. Rad21-PK fluorescence was measured from nuclear spreads at the indicated time-points (50-100 nuclei per sample). Error bar = 95% confidence interval of the mean with α =0.05.(**D**) The curves in (C) were fitted to a single exponential (one phase decay) to estimate Rad21 half-life on chromatin. Error bars = 95% confidence interval of the mean with α =0.05.(**E**) Rad21 half-life on G1 chromatin. The error bars represent the 95% confidence intervals. (**F**) DNA content analysis showing that cells remained arrested with a G1 DNA content during the duration of the experiment.

The experiment in (A) indicates that the steady state amount of chromatin-bound Rad21 is increased in *wpl1* Δ and *pds5* Δ cells and the double-mutant behaves as *pds5* Δ , showing that *pds5* Δ is epistatic to *wpl1* Δ . This is consistent with Wpl1 and Pds5 acting in a common pathway that stimulates cohesin removal from chromatin. Loss of Pds5 may slightly alter the stability of cohesin binding to DNA, resulting in a lower steady-state.

A similar relationship between Wpl1 and Pds5 was deduced from the kinetics of Rad21 removal from chromatin upon inactivation of the cohesin loader (C). Rad21 half-life on chromatin (E) is extended in *wpl1* Δ and to a lesser extent in *pds5* Δ and *pds5* Δ is epitastic to *wpl1* Δ .

It is of note that the deletion of *wpl1* or *pds5* slows-down the rate of cohesin release but does not lead to the full stabilization of cohesin onto chromatin.

	Strain	Genotype
Figure 1A	3678	h ⁻ ura4 psm3-GFP-nat ^R
	3469	h^{-} ura4 psm3-GFP-ura4 ⁺ wpl1 Δ ::kan ^R eso1 Δ ::ura4 ⁺
	3505	h ura4 psm3-GFP-ura4⁺ wpl1∆::kan ^R
	3676	h ura4 psm3-GFP-nat ^R pds5∆::ura4 ⁺
Figure 1B	2	h
	2967	h ⁻ ura4 pds5∆::ura4 ⁺
Figure 1C	2	h
	3738	h^{T} pds5 Δ ::nat ^R
	5415	h^{T} pds5 Δ ::nat ^R clr6-1
	5505	h ⁻ clr6-1
Figure 2	405	h ⁻ cdc25-22
	3448	h ⁻ cdc25-22 rad21-9PK-kan ^R
	5687	h^{+} cdc25-22 rad21-9PK-kan ^R pds5 Δ ::ura4 ⁺ ura4
Figure 3	405	h ⁻ cdc25-22
	3202	h ⁻ cdc25-22 mis4-367
	3333	h ⁻ cdc25-22 mis4-367 rad21-9PK-kan ^R
	3378	h ⁻ cdc25-22 mis4-367 rad21-9PK-kan ^R pds5 <i>∆</i> ::ura4 ⁺ ura4
Figure 4	3202	h ⁻ cdc25-22 mis4-367
	3333	h ⁻ cdc25-22 mis4-367 rad21-9PK-kan ^R
	3355	h ⁻ cdc25-22 mis4-367 rad21-9PK-kan ^R wpl1 <i>∆</i> ::kan ^R
	3378	h cdc25-22 mis4-367 rad21-9PK-kan ^R pds54::ura4 ⁺ ura4
	3385	h cdc25-22 mis4-367 rad21-9PK-kan ^R wpl1 Λ ::kan ^R pds5 Λ ::ura4 ⁺ ura4
Figure 5	3202	h ⁻ cdc25-22 mis4-367
	3726	h^{-} cdc25-22 mis4-367 rad21-9PK-kan ^R wpl1 Δ ::hvg ^R eso1 Δ ::ura4 ⁺ ura4
	4513	h cdc25-22 mis4-367 rad21-9PK-kan ^R pds5/ \therefore ura4 ⁺ eso1/ \therefore ura4 ⁺ ura4
	4514	h ⁻ cdc25-22 mis4-367 rad21-9PK-kan ^R wpl1/\::hvd ^R pds5/\::ura4 ⁺ eso1/\::ura4 ⁺ ura4
Figure S1	405	h cdc25-22
	3202	h ⁻ cdc25-22 mis4-367
	6029	h ⁻ cdc25-22 mis4-367 pds5/\::ura4 ⁺ ura4
Figure S2	3202	h [°] cdc25-22 mis4-367
	3333	h ⁻ cdc25-22 mis4-367 rad21-9PK-kan ^R
-	3492	h ⁻ cdc25-22 mis4-367 pds5-GFP-kan ^R
	4818	h ⁻ cdc25-22 mis4-367 pds5-GFP-kan ^R rad21-9PK-kan ^R
Figure S3	3202	h ⁻ cdc25-22 mis4-367
	3492	h ⁻ cdc25-22 mis4-367 pds5-GFP-kan ^R
	3513	h ⁻ cdc25-22 mis4-367 pds5-GFP-kan ^R wpl1 <i>∆</i> ::kan ^R
	5721	h ⁻ cdc25-22 mis4-367 pds5-GFP-kan ^R wpl1/::hvg ^R eso1/::ura4 ⁺ ura4
Figure S4 A-B	2760	h ⁻ ura4 ⁺ -nmt-res1Cter
	3330	h ⁻ ura4 ⁺ -nmt-res1Cter rad21-9PK-kan ^R
	3332	h ⁻ ura4 ⁺ -nmt-res1Cter rad21-9PK-kan ^R wpl1 <i>∆</i> ::kan ^R
	3379	h ura4 ⁺ -nmt-res1Cter rad21-9PK-kan ^R pds5/::ura4 ⁺
	3412	h^{-} ura4 ⁺ -nmt-res1Cter rad21-9PK-kan ^R wpl1 λ ··kan ^R pds5 λ ··ura4 ⁺
Figure S4 C-F	2760	h ura4 ⁺ -nmt-res1Cter
	3324	h μ
<u> </u>	3328	h ura4 ⁺ -nmt-res1Cter mis4-367 rad21-9PK-kan ^R
	3357	h^{-} ura4 ⁺ -nmt-res1Cter mis4-367 rad21-9PK-kan ^R pds5 Λ :ura4 ⁺
	3413	h^{-} ura A^{+} -nmt-res 1 Cter mis 4-367 rad 21-0PK-kan ^R wold A: kan ^R nds 5 A: ura A^{+}
1	10110	

Table S1. Strains used in this study