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Supplementary methods

Figure S1. FISH was performed on paraformaldehyde fixed cells as described [S1]. Cosmids
were used as FISH probes. Chromosome 1 cosmids were obtained from the Sanger Sanger (U.
K.) and used as in [S1]. Chromosome 2 cosmids used as probes were c1228 (cen2 proximal)
and c3F8 (left arm) [S2]. Distances between FISH signals were measured from maximum
projections of images created from z series of eight 0.4-pum steps using MetaMorph software.

Figure S2 and S3. Pds5-GFP was detected using anti-GFP polyclonal antibodies (A11122,
2ug/ul) on nuclear spreads (D800) and by ChiP (2pg/ChiP).

Figure S4. Cells were arrested in G1 by the overexpression of a C-terminal fragment of the
Resl protein as described [S3]. To estimate Rad21 half-life on chromatin, individual data sets
were fitted to a single exponential function using GraphPadPrism 4 (GraphPad Software).
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Figure S1. Loss of sister-chromatid cohesion in pds54 arrested G2 cells.

(A) Schematics showing the position of the FISH probes along chromosomes 1 and 2. Distances are in
megabases. (B) FISH on G2 arrested cells. Cycling cells at 25°C (~80% G2) were shifted to 37°C for 3 hours and
processed for FISH with the indicated cosmid probes. FISH signals appear in green, DAPI-stained nuclei in grey.
Bar = 2um. In an otherwise wt or mis4-367 background the 2 FISH signals are co-localized or closely apposed to
each other. By contrast the two FISH signals are separated in pds54 cells. (C) The distance between the 2 FISH
signals was measured for 100-150 nuclei per sample. The distribution is similar in wt and mis4-367 cells with most

cells showing closely apposed (<0.4um) signals. By contrast, most pds54 cells show widely separated (>0.4um)
FISH signals.
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Figure S2. Pds5 co-localizes with the stable fraction of Rad21 on replicated chromosomes.

(A) A fraction of Pds5 remains bound to G2 chromosomes after inactivation of the cohesin loader.
Cycling cdc25-22 mis4-367 rad21-PK pds5-GFP cells were shifted to 37°C for 3 hours. Chromatin-
bound Rad21-PK and Pds5-GFP were quantified from nuclear spreads before and after the
temperature shift from 70-80 nuclei per sample. Error bar = 95% confidence interval of the mean with
0=0.05. (B) Images of nuclear spreads after the 3 hours shift at 37°C showing that Pds5-GFP and
Rad21-PK dots are co-localized. Bar = 2um. (C) ChiP assay after the 3 hours shift at 37°C showing that
Pds5-GFP and Rad21-PK display similar binding patterns. Error bar = SD from 3 ChiPs.
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Figure S3. Pds5 and Rad21 binding to chromosomes in wpll4 and esol4dwpllA.

Cycling cells at 25°C were shifted to 37°C for 3 hours to prevent further cohesin deposition (mis4-367) while
cdc25-22 prevented entry into mitosis. (A) Images of Pds5-GFP immunofluorescence on nuclear spreads from
cells collected before and after 3 hours at 37°C. Chromatin was counterstained with DAPI. Bar = 2um. (B)
Quantification of chromatin-bound Pds5. Pds5-GFP fluorescence intensity was measured for 50-100 nuclei for
each sample. Error bar = 95% confidence interval of the mean with a =0.05. (C) ChIP assays showing that Pds5
and the stable fraction of Rad21 are found at the same chromosomal locations. Cells were collected 3 hours
after the shift at 37°C and processed for Pds5-GFP ChiP (mean from 2 ChiPs) and Rad21-PK ChiP (error bar =

SD from 4 ChiPs).
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Figure S4. Wpl1 and Pds5 promote Rad21 release from G1 chromatin
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(A) Steady state amount of chromatin-bound Rad21-PK in G1 arrested mis4* cells. Cells were arrested in G1 by the
overexpression of the C-terminal domain of Res1 (nmt-res1Cter [S3]). Nuclear spreads were made and chromatin-
bound Rad21-PK was detected by indirect immunofluorescence. Fluorescence intensity was measured for 50-100
nuclei per sample. Error bar = 95% confidence interval of the mean with o =0.05.(B) Flow cytometry analysis shows
that cells arrested with a 1C DNA content. (C) Kinetics of Rad21 removal from G1 chromatin. Cells bearing the mis4-
367 mutation were arrested in G1 at 25°C as in (A) and then shifted to 36.5°C to prevent further cohesin loading.
Rad21-PK fluorescence was measured from nuclear spreads at the indicated time-points (50-100 nuclei per sample).
Error bar = 95% confidence interval of the mean with o =0.05.(D) The curves in (C) were fitted to a single exponential
(one phase decay) to estimate Rad21 half-life on chromatin. Error bars = 95% confidence interval of the mean with o
=0.05.The dotted lines show the 95% confidence bands. (E) Rad21 half-life on G1 chromatin. The error bars represent
the 95% confidence intervals. (F) DNA content analysis showing that cells remained arrested with a G1 DNA content
during the duration of the experiment.

The experiment in (A) indicates that the steady state amount of chromatin-bound Rad21 is increased in wpll4 and
pds54 cells and the double-mutant behaves as pds54, showing that pds54 is epistatic to wpllA4. This is consistent with
Wpl1 and Pds5 acting in a common pathway that stimulates cohesin removal from chromatin. Loss of Pds5 may
slightly alter the stability of cohesin binding to DNA, resulting in a lower steady-state.
A similar relationship between Wpl1 and Pds5 was deduced from the kinetics of Rad21 removal from chromatin upon
inactivation of the cohesin loader (C). Rad21 half-life on chromatin (E) is extended in wpll4 and to a lesser extent in
pds54 and pds54 is epitastic to wpll4.
It is of note that the deletion of wpll or pds5 slows-down the rate of cohesin release but does not lead to the full
stabilization of cohesin onto chromatin.



Table S1. Strains used in this study

Strain | Genotype
Figure 1A 3678 h” ura4 psm3-GFP-nat"
3469 h ura4 psm3-GFP-ura4” wpl14::kan" esol4::ura4”
3505 h” ura4 psm3-GFP- ura4 wpl14:kan®
3676 h  ura4 psm3-GFP-nat® pds54::ura4”
Figure 1B 2 h
2967 h™ ura4 pds54::ura4”
Figure 1C 2 h
3738 h” pds54::nat”
5415 h™ pds54::nat” clr6-1
5505 h™ clr6-1
Figure 2 405 h” cdc25-22
3448 h” cdc25-22 rad21-9PK-kan"
5687 h* cdc25-22 rad21-9PK-kan” pds54::urad” ura4
Figure 3 405 h” cdc25-22
3202 h” cdc25-22 mis4-367
3333 h” cdc25-22 mis4-367 rad21-9PK-kan"
3378 h” cdc25-22 mis4-367 rad21-9PK-kan" pds54::ura4* ura4
Figure 4 3202 h” cdc25-22 mis4-367
3333 h” cdc25-22 mis4-367 rad21-9PK-kan"
3355 h  cdc25-22 mis4-367 rad21-9PK-kan" wpl14::kan®
3378 h™ cdc25-22 mis4-367 rad21-9PK-kan® pds54::urad” ura4
3385 h” cdc25-22 mis4-367 rad21-9PK-kan" wpl14::kan® pds54::ura4” ura4
Figure 5 3202 h” cdc25-22 mis4-367
3726 h” cdc25-22 mis4-367 rad21-9PK-kan" wpl14::hyg" esol4::ura4” urad
4513 h cdc25-22 mis4-367 rad21-9PK-kan" pds54::ura4’ esol4::urad” urad
4514 h” cdc25-22 mis4-367 rad21-9PK-kan" wpll4: hyg pds54::urad” esolA::urad” urad
Figure S1 405 h” cdc25-22
3202 h” cdc25-22 mis4-367
6029 h” cdc25-22 mis4-367 pds54::urad” ura4
Figure S2 3202 h” cdc25-22 mis4-367
3333 h” cdc25-22 mis4-367 rad21-9PK-kan"
3492 h” cdc25-22 mis4-367 pds5-GFP-kan"
4818 h” cdc25-22 mis4-367 pds5-GFP-kan" rad21-9PK-kan"
Figure S3 3202 h” cdc25-22 mis4-367
3492 h” cdc25-22 mis4-367 pds5-GFP-kan"
3513 h  cdc25-22 mis4-367 pds5-GFP-kan" wpl14::kan®
5721 h  cdc25-22 mis4-367 pds5-GFP-kan” wpl14:hyg" esol4::ura4”* ura4
Figure S4 A-B | 2760 h” ura4’-nmt-res1Cter
3330 h” ura4’-nmt-res1Cter rad21-9PK-kan"
3332 h” ura4*-nmt-res1Cter rad21-9PK-kan" wpl14::kan"
3379 h ura4*-nmt-res1Cter rad21-9PK-kan" pds54::ura4”
3412 h” ura4*-nmt-res1Cter rad21-9PK-kan" wpll4::kan® pds54::ura4”
Figure S4 C-F | 2760 h” ura4’-nmt-res1Cter
3324 h” ura4*-nmt-res1Cter mis4-367 rad21-9PK-kan" wpl14::kan®
3328 h” ura4*-nmt-res1Cter mis4-367 rad21-9PK-kan"
3357 h ura4*-nmt-res1Cter mis4-367 rad21-9PK-kan" pds54::urad”
3413 h” ura4*-nmt-res1Cter mis4-367 rad21-9PK-kan" wpll4: ‘kan® pds54::urad”
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