
Appendix S1

Here we state and discuss in a formal context the arguments used in support of the geometric condition
and its application for detection of multiplicities. In its most general form, the problem to be addressed
can be stated as follows:

Consider the functions F : Rn → Rm and W : Rn → Rn−m (n and m, with m < n, denote here
the dimensions of arbitrary spaces). Let W (x) be linear so that W (x;x0) = 0 describes a linear variety
defined by n−m hyperplanes passing by some x0 ∈ Rn.

Let C = DxW
T (x;x0), where DxW denotes the Jacobian of W with respect to x, be the matrix that

has as columns a basis of the orthogonal complement to the subspace that induces the linear variety. The
question is whether or not the system:

F (x) = 0

W (x;x0) = 0 (1)

can have more than one solution for some x0 ∈ Rn.
In order to discuss the main elements of the approach let us partition the space Rn in two subspaces

Rm and Rn−m, and assume that the function F (u, v) : Rm × R(n−m) → Rm is analytic (i.e. continuous
and differentiable up to any order). Denote by DuF and DvF the Jacobians of F with respect to vector
u ∈ Rm and v ∈ Rn−m, respectively.

We say that F (u, v) = 0 is continuous in some vicinity of x∗ = (u∗, v∗) ∈ Rn if it satisfies the implicit
function theorem [1], which reads as follows:

Suppose F (x∗) = 0 for some x∗ ∈ Rn, and that the matrix DuF (x∗) is nonsingular. Then there exist
some open sets U ⊂ Rm and V ⊂ Rn−m containing u∗ and v∗ respectively, and a continuous function
H : V → U such that u∗ = H(v∗) and F (H(v), v) = 0 for all v ∈ V . Moreover H(v) is uniquely defined.

Let e1 and e2 be two unit vectors as in Figure S1, and select a small distance h around x∗ so that the
vectors:

y1 = x∗ + (1/2)he1 (2)

y2 = x∗ + (1/2)he2 (3)

belong to the open set U × V . By the mean value theorem [1], for each continuous and differentiable
function Fi(x) with i = 1, . . . ,m, there exist some number ti ∈ (0, 1) and a vector zi = (1− ti)y1 + tiy2
such that:

Fi(y2)− Fi(y1) = DxFi(zi)(y2 − y1). (4)

Choosing h sufficiently small, we have that DxFi(zi) → DxFi(x
∗), so this way Fi(y2) can be reasonably

approximated [1] as:
Fi(y2) ≃ Fi(y1) +DxFi(x

∗)(y2 − y1). (5)

Repeating this argument for all the functions i = 1, . . . ,m we have:

F (y2) ≃ F (y1) +DxF (x∗)(y2 − y1). (6)

With these preliminaries we are in the position to state the following proposition:
Proposition A1. Let F (x) : Rn → Rm be analytic, and F (x) = 0 continuous in some vicinity of x∗.

Let y1 be a solution sufficiently close to x∗, there exists at least some y ̸= y1 which simultaneously solves:

F (y) = 0

PT (y − y1) = 0 (7)

where P = DxF
T (x∗).
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Proof: Since F (x) = 0 is continuous around x∗ it satisfies the conditions of the implicit function
theorem. Thus two vectors y1 and y exist close enough to x∗ so that F (y1) = F (y) = 0 (i.e. the vectors
are in the U ×V open set as discussed above). Also, since (6) applies, we have that DxF (x∗)(y− y1) = 0
which coincides with (7). �

Remark Note that the columns of P are linearly independent, at least in the neighborhood of x∗ which
is where the implicit function theorem holds. △

What Proposition A1 presents is a way to construct hyperplanes secant to a manifold in the neigh-
borhood of a given regular point. Here are two direct consequences to be drawn from the discussion and
Proposition A1:

Corollary A1. If the n × n matrix G = [ P C ]T is full rank, then problem (1) has at most one
solution for any x0, at least in the vicinity of x∗.

Proof: Let y1 be a solution of (1) in the vicinity of x∗, as described in Proposition A1. Any other
solution, at least in the vicinity must be of the form y = y1 + τ where the vector τ must simultaneously
satisfy PT · τ = 0 and CT · τ = 0. Since G is full rank, τ = 0 so the solution is unique. �

Corollary A2. If the n×n matrix G = [ P C ]T is rank deficient, then problem (1) has more than
one solution in the vicinity of x∗, at least for some x0.

Proof: Since G is rank deficient, a nonzero vector τ exists simultaneously satisfying PT · τ = 0 and
CT · τ = 0. Let y1 be one solution of (1) in the vicinity of x∗ as described in Proposition A1, then
y = y1 + τ is another solution of (1) with x0 = y1. �
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