
Appendix

Algorithm description

Overview of the algorithm. Besides the time series of N samples and the sampling period Ts, the
user is asked to enter values of four parameters that rule the acuteness of the detection process and two
parameters that define the width of the IPI tunnel. We use the parameter names in the following algorithm
description. We give a tutorial in the result section for helping the users to choose the appropriate values.

1. The nominal period Tp represents the smallest duration in which, from one pulse occurrence, one
expects the following one. In what follows, we note:

kp =

⌊
Tp

Ts

⌋
.

Note that the time interval [tk+1, tk + Tp] contains the kp time indexes {k+1, ..., k+kp}.

2. The relative magnitude threshold: λr,

3. the absolute magnitude threshold ratio: λa,

4. the relative magnitude threshold ratio for 3-point peaks: λ3p,

5. the ratios defining the edges of the IPI tunnel: α, β.

The algorithm body is segmented into 6 steps. The third step is itself segmented into 3 substeps. Each
step is described in detail below with an accompanying box enunciating the corresponding pseudo-code.

The output of the algorithm consists in:

1. the set P of detected pulse occurrences,

2. the corresponding sequence Θ of IPIs,

3. the lower and upper edges of the IPI tunnel, ψinf and ψsup respectively,

and associated graphical outputs (of which we make an intensive use in the result section):

1. the sampled time series (Ai)
n
i=1 versus the sampling times with identified pulse occurrences,

2. the graph of the IPI versus the corresponding pulse occurrences, more precisely (pi+1, θi)
s(P )−1
i=1 ,

together with the IPI tunnel.

Input data: (Ai)
n
i=1, T s, Tp, λr, λa, λ3p, α, β.

Algorithm step 1
...

Algorithm step 6

Output data: P,Θ, ψinf , ψsup.

Related graphical outputs:

• the time series (ti, Ai)
n
i=1 with vertical bars indicating the detected pulse occurrences,

• the graph of the IPI versus the corresponding pulse occurrences and the IPI tunnel:

(pi+1, θi)
s(P )−1
i=1 , ψinf and ψsup.
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Notations In the following, we search iteratively for a time index corresponding to the minimal (resp.
maximal) value of a subset of time series Ak. When there are several time indexes verifying this condition,
we choose the smallest one. Hence, for I a subset of {1,2, ..., N }, we define the following notations:

arg min
k∈I

Ak = min{j ∈ I|Aj = min
k∈I

Ak}

arg max
k∈I

Ak = min{j ∈ I|Aj = max
k∈I

Ak}

Step 1: Search for the first pulse. Under the assumption that the maximum value of Ak retrieved
from a sufficiently large time window coincides with a pulse occurrence, the first pulse is detected by
searching for the maximum value of Ak for k in {1,2,...,2kp} where kp = bTp/Tsc. The choice of the
time window size (twice nominal IPI) containing 2kp samples is a trade-off between the risk of missing
the first pulses (encountered when the window is too large) and the risk of false detection (encountered
when the window is too small).

Step 1: Find the first pulse occurrence index p1 by searching for the maximum value of the sampled
time series Ak within the first 2kp data samples:

p1 := arg max
k∈{1,2,...,(2kp)}

Ak

Step 2: Search for the pulses following the first one. After the detection of the first pulse
located at k = p1, the second one could be detected by searching for the maximum value of Ak for
k ∈ {(p1 + 1), (p1 + 2), . . . , (p1 + kp+ s)}, where some margin value s should be chosen for the trade-off
between over-detection and under-detection. To reduce the risks of misdetection, instead of searching for
the maximum value of Ak at this stage, the minimum value of Ak for k ∈ {(p1 + 1), . . . , (p1 + kp)} is first
looked for. Let k = m2 be the location of this minimum, then the second pulse is searched for within the
window {(m2 + 1), . . . , (m2 + kp)}. These searches are made within windows of size kp (see Figure S3).
As the minimum and the maximum being searched for are expected to be inside the windows of size kp,
there is no need to choose a margin value. The following pulses are then searched for similarly.

Step 2: Find the following pulse occurrences pi by alternatively searching for the minimum and maxi-
mum values of the sampled time series in a moving window covering kp data samples:

i := 1

while pi + kp ≤ N do

mi+1 := arg min
k∈{pi+1,pi+2,...,pi+kp}

Ak

if mi+1 + kp ≤ N then

pi+1 := arg max
k∈{mi+1+1,mi+1+2,...,mi+1+kp}

Ak

end if

i := i+ 1

end while

sp := i− 1

P := {p1, . . . , psp}
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Step 3: Remove too small peaks by various thresholding methods.

Step 3.1: Pulse height median-based thresholding. Several methods are used to remove small
pulses possibly resulting from false detections. The first method is based on a threshold applied to the
heights of the detected pulses. We recall that the height of the i -th pulse is defined as the difference
between its amplitude Api and the lowest value of Ak within the sampled time series, denoted by A. If
the height of a pulse is lower than the median of the heights of all the detected pulses multiplied by a
ratio λr, then it is removed from the set of detected pulses.

Step 3.1. Pulse height median-based thresholding:

A := min
k∈1,2,...,N

Ak

P := {pi ∈ P : Api −A > λr(median(Ap1 , . . . , Apsp )−A)}
sp := s(P )

Step 3.2: Local relative magnitude-based thresholding. The second method for removing false
pulses is to compare the magnitude of each pulse with those of its neighbors. Let B1 and B2 be respectively
the minimum values of Ak for pi−1 < k < pi and pi < k < pi+1. The local magnitude of the i -th pulse
is defined as the geometric mean of (Api − B1) and (Api − B2). Let B0 be the lowest value out of B1

and B2, The local magnitude of the i -th pulse is compared with the geometric mean of (Api−1
− B0)

and (Api+1 − B0), relatively to a threshold λr. The comparison of geometric means is equivalent to the
comparison of arithmetic means in the logarithmic scale, so that it tends to favor smaller quantities.

Step 3.2. Local relative magnitude-based thresholding:
for i = 2, . . . , (sp − 1) do

B1 := min
k∈{(pi−1+1),(pi−1+2),...,(pi−1)}

Ak

B2 := min
k∈{(pi+1),(pi+2),...,(pi+1−1)}

Ak

B0 := min(B1, B2)

if (Api −B1)(Api −B2) < λ2r(Api−1
−B0)(Api+1

−B0) then
Erase pi from P

end if
end for

sp := s(P )
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Step 3.3: Local magnitude absolute thresholding. The third method for removing false pulses is
based on some prior knowledge about the magnitudes of the pulses. Let B1 and B2 be respectively the
minimum values of Ak for pi−1 < k < pi and pi < k < pi+1. If the local magnitude of the i -th pulse (the
geometric mean of Api −B1 and Api −B2) is smaller than a chosen threshold λa, then it is removed from
the set of detected pulses.

Step 3.3. Local magnitude absolute thresholding:
for i = 2, . . . , (sp − 1) do

B1 := min
k∈{(pi−1+1),(pi−1+2),...,(pi−1)}

Ak

B2 := min
k∈{(pi+1),(pi+2),...,(pi+1−1)}

Ak

if (Api −B1)(Api −B2) < λ2a then
Erase pi from P

end if
end for

sp := s(P )
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Step 4: Retrieve missed pulses. To retrieve possible missed pulses, the data points lying between
each pair of detected pulses are examined. For each sample index j lying between the pulse occurrences
pi and pi+1, the relative height of the sample Aj is defined as the geometric mean of Aj−B1 and Aj−B2,
where B1 and B2 are respectively the lowest values of Ak for pi < k ≤ j and for j ≤ k < pi+1. The
sample exhibiting the maximum relative height between pi and pi+1 is compared with the geometric
mean of A(pi)− B0 and A(pi+1)− B0, where B0 is the lowest sample value between pi and pi+1. If the
comparison with respect to the threshold λr is conclusive, a new pulse is added to the set of detected
pulses. This process is repeated three times to deal with the case where several pulses might have been
missed between two consecutive previously detected pulses..

Step 4. Retrieve missed pulses.
for k = 1, 2, 3 do
J = ∅
for i = 1, . . . , (sp − 1) do

if pi + 3 < pi+1 then
for j = (pi + 2), . . . , (pi+1 − 2) do

B1 := min
k∈{(pi+1),...,j}

Ak

B2 := min
k∈{j,...,(pi+1−1)}

Ak

Cj := (Aj −B1)(Aj −B2)

end for

jmax := arg max
j∈{(pi+2),...,(pi+1−2)}

Cj

B0 := min(B1, B2)

if Cjmax
> λ2r(A(pi)−B0)(A(pi+1)−B0) then

Insert jmax into J
end if

end if
end for
Insert J into P
sp = s(P )

end for
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Step 5: Removal of 3-point peaks. When the rhythm of the hormonal pulses accelerates, the IPI
may approach the sampling period Ts, to the point that it becomes impossible to reliably detect pulses.
In such situations, the sampled time series may exhibit local maxima supported by 3 consecutive data
samples. To avoid false detections, pulses detected upon 3 points are identified and possibly removed.
For a pulse detected at k = pi, if pi − 1 and pi + 1 are local minima “sharp” enough, in the sense that
A(pi − 2) − A(pi − 1) and A(pi + 2) − A(pi + 1) are large enough compared to A(pi) − A(pi − 1) and
A(pi)−A(pi+1), then Api is considered as a peak detected upon 3 points (referred to as “3-point peak”)
and is removed from the set of detected pulses.

Step 5. Remove pulses detected upon 3 data points:

sp := s(P )

for i = 1, . . . , sp do

if

 pi ≥ 3, and pi ≤ N − 2,
and A(pi − 2) > A(pi − 1), and A(pi) > A(pi − 1),
and A(pi) > A(pi + 1), and A(pi + 2) > A(pi + 1)

 then

R :=
{[A(pi − 2)−A(pi − 1)] + [A(pi + 2)−A(pi + 1)]}/2√

[A(pi)−A(pi − 1)][A(pi)−A(pi + 1)]

if R ≥ λ3p then
Erase pi from P

end if
end if

end for

Step 6: IPI sequence and tunnel construction. Under some regularity assumptions of the IPIs,
the detected pulses leading to IPI outliers should be corrected. For this purpose, a cubic polynomial
θ0 +θ1x+θ2x

2 +θ3x
3 is first fitted to the IPIs where x is equal to the shifted pulse index i. Let (θ̂0, ..., θ̂3)

be the value of (θ0, ..., θ3) fitted to the segmented IPIs and φ(x) = θ̂0 + θ̂1x+ θ̂2x
2 + θ̂3x

3. The lower and

upper edges of the IPI tunnel are defined respectively by φ
(
x+

sp−1
2

)
(1−α) and φ

(
x+

sp−1
2

)
(1− β).

The centering of the i -indexes (leading to xi) is for the purpose of a better numerical accuracy.

Step 6. IPI sequence and tunnel construction:

sp := s(P )

for i = 1, . . . , sp − 1 do

qi := pi+1 − pi

xi := i− sp − 1

2

end for

(θ̂0, θ̂1, θ̂2, θ̂3) = arg min
(θ0,...,θ3)∈R4

sp−1∑
i=1

[
(θ0 + θ1xi + θ2x

2
i + θ3x

3
i )− qi

]2
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Algorithm robustness to assay error

In our model of synthetic LH time series presented in the Methods section, we have introduced a multi-
plicative noise characterized by the random numbers ρassay(i) ∈ [−b, b] (see Equation 5 of the manuscript)
obtained from a quasi-uniform distribution. Of course, it is also possible to choose another statistical
distribution, such as the normal distribution with a prescribed standard deviation SD, to reproduce the
assay variance. We have run several tests to investigate the robustness of our algorithm on several trials
differing by the type of distribution (either uniform or normal), the maximum amplitude (in the uniform
case) or SD value (in the normal case) and the absence or introduction of dose-dependence.

We have assessed the ability of our algorithm to detect LH pulses in synthetic time series built with a
high, dose-independent variability. We have investigated both uniformly distributed (UD) and normally
distributed (ND) assay errors using the same set of values for the amplitude b of the uniform distribution
and the standard deviation SD of the normal distribution: 25%, 30%, 32%, 38% and 40%. In each case,
we have generated 10 synthetic LH time series by sampling, every 10 min, the theoretical signal with
the same pattern of decreasing pulse amplitude and decreasing interpulse interval as in case F of Figure
6. We have applied our algorithm with the default parameter values and we have analyzed its output
for each time series. Table S1 gives the corresponding number of time series, over the 10, for which the
outputs of the detection algorithm fall in one of the 3 following cases :

1. detection of every pulse duly associated with a spike, but no over-detection of artifact LH pulse
(well-detected time series),

2. detection of an extra, artifact pulse (over-detection) or missing of a genuine pulse (under-detection),
with a repercussion on the IPI series (IPI outlier),

3. over-detection or under-detection, without identifiable repercussion on the IPI series (no IPI outlier).

To illustrate these results, we have shown, in Figure S4, representative algorithm outputs obtained from
4 instances of simulated LH time series with either UD assay errors (b = 32 % and b = 38 %) or ND
assay errors (SD = 32% and SD = 38 %) respectively.

As shown in Table S1, for b = 20 % or SD = 20 %, the algorithm detected all the 20 time series
correctly. For b = 25 % or SD = 25 %, the algorithm failed rarely (1 case out of ten with UD assay errors
and none with ND assay errors). For b = 30 % or SD = 30 %, the algorithm remained reliable most of the
time: it failed twice in each distribution case, yet it detected the whole 16 other time series accurately.
It seems that over the critical b (resp. SD) value of 30%, the algorithm becomes more sensitive to the
assay variability: due to the high level of noise, the results are deprecated with b and SD set to 32%,
even if they remain relevant in half cases. Instances of time series obtained with b = 32% and SD = 32%
and the corresponding outputs of the algorithm (time series together with the detected pulse occurrences
and IPI series) where the detection goes well are shown in Figure S4. Over- or under-detections appear
in most of the outputs when the algorithm is applied to time series obtained with values of b or SD
above 35%. However, it is worth noticing that, even for extreme values of b or SD (38% or 40%), over-
or under-detections lead almost each time to IPI outliers (see bottom panels of Figure S4) that can be
handled in the same way as we do in the Results section.
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