Appendix

Algorithm description

Overview of the algorithm. Besides the time series of N samples and the sampling period Ts, the
user is asked to enter values of four parameters that rule the acuteness of the detection process and two
parameters that define the width of the IPI tunnel. We use the parameter names in the following algorithm
description. We give a tutorial in the result section for helping the users to choose the appropriate values.

1. The nominal period Tp represents the smallest duration in which, from one pulse occurrence, one
expects the following one. In what follows, we note:

Tp

Note that the time interval [tg41,tx + T'p] contains the kp time indexes {k+1, ..., k+kp}.
The relative magnitude threshold: A,
the absolute magnitude threshold ratio: Ag,

the relative magnitude threshold ratio for 3-point peaks: Asp,

ook N

the ratios defining the edges of the IPI tunnel: a, 3.

The algorithm body is segmented into 6 steps. The third step is itself segmented into 3 substeps. Each
step is described in detail below with an accompanying box enunciating the corresponding pseudo-code.
The output of the algorithm consists in:

1. the set P of detected pulse occurrences,
2. the corresponding sequence © of IPIs,
3. the lower and upper edges of the IPI tunnel, 1iys and s, respectively,
and associated graphical outputs (of which we make an intensive use in the result section):

1. the sampled time series (A4;), versus the sampling times with identified pulse occurrences,

2. the graph of the IPI versus the corresponding pulse occurrences, more precisely (p;t1, 90?&?717

together with the IPI tunnel.

Input data: (A4;)7—1,Ts,Tp, Ar, Aa, Azp, @, 5.

Algorithm step 1

Algorithm step 6

Output data: P, O, ¢int, Ysup-
Related graphical outputs:
o the time series (¢;, A;)1; with vertical bars indicating the detected pulse occurrences,

e the graph of the IPI versus the corresponding pulse occurrences and the IPI tunnel:
P)—1
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Notations In the following, we search iteratively for a time index corresponding to the minimal (resp.
maximal) value of a subset of time series A;. When there are several time indexes verifying this condition,
we choose the smallest one. Hence, for I a subset of {1,2, ..., N}, we define the following notations:

in Ay = min{j € I|4; = min A
argmin Ay = min{j € 7|4; = min A}

argr]?g?Ak =min{j € I[|4; = I}Clg;(Ak}

Step 1: Search for the first pulse. Under the assumption that the maximum value of Ay retrieved
from a sufficiently large time window coincides with a pulse occurrence, the first pulse is detected by
searching for the maximum value of Ay for k£ in {1,2,...,.2kp} where kp = |Tp/Ts]. The choice of the
time window size (twice nominal IPT) containing 2kp samples is a trade-off between the risk of missing
the first pulses (encountered when the window is too large) and the risk of false detection (encountered
when the window is too small).

Step 1: Find the first pulse occurrence index p; by searching for the maximum value of the sampled
time series Ay within the first 2kp data samples:

= ar ma;
b1 gke{l,2,..3((2kp)}

Step 2: Search for the pulses following the first one. After the detection of the first pulse
located at k = p;, the second one could be detected by searching for the maximum value of Aj for
ke{(pr+1),(p1+2),...,(p1 + kp+ s)}, where some margin value s should be chosen for the trade-off
between over-detection and under-detection. To reduce the risks of misdetection, instead of searching for
the maximum value of Ay, at this stage, the minimum value of Ay, for k € {(p1+1),..., (p1 +kp)} is first
looked for. Let &k = mo be the location of this minimum, then the second pulse is searched for within the
window {(mg +1),...,(ma + kp)}. These searches are made within windows of size kp (see Figure S3).
As the minimum and the maximum being searched for are expected to be inside the windows of size kp,
there is no need to choose a margin value. The following pulses are then searched for similarly.

Step 2: Find the following pulse occurrences p; by alternatively searching for the minimum and maxi-
mum values of the sampled time series in a moving window covering kp data samples:

1:=1
while p; + kp < N do

n

M1 1= arg mi
ke{pi+1,pi+2,....pi+kp}

if mi+1 + kp S N then

Pi41 = arg max Ay
ke{mir1+1,mip1+42,...,mip1+kp}
end if
ti=14+1
end while
Spi=1—1

P = {pla"' ;psp}




Step 3: Remove too small peaks by various thresholding methods.

Step 3.1: Pulse height median-based thresholding. Several methods are used to remove small
pulses possibly resulting from false detections. The first method is based on a threshold applied to the
heights of the detected pulses. We recall that the height of the i-th pulse is defined as the difference
between its amplitude A,, and the lowest value of A within the sampled time series, denoted by A. If
the height of a pulse is lower than the median of the heights of all the detected pulses multiplied by a
ratio A, then it is removed from the set of detected pulses.

Step 3.1. Pulse height median-based thresholding;:
= min Ay
kel,2,...,N
P:={p; € P: Ay, — A> A\ (median(Ay,,..., 4y, ) — A)}
sp = s(P)

Step 3.2: Local relative magnitude-based thresholding. The second method for removing false
pulses is to compare the magnitude of each pulse with those of its neighbors. Let B; and Bs be respectively
the minimum values of Ay for p;_1 < k < p; and p; < k < p;11. The local magnitude of the i-th pulse
is defined as the geometric mean of (A4,, — By) and (Ap, — B2). Let By be the lowest value out of By
and Bs, The local magnitude of the i-th pulse is compared with the geometric mean of (A4,, , — By)
and (A,,,, — By), relatively to a threshold A,. The comparison of geometric means is equivalent to the
comparison of arithmetic means in the logarithmic scale, so that it tends to favor smaller quantities.

Step 3.2. Local relative magnitude-based thresholding:
fori=2,...,(sp—1) do

By = min
ke{(pi—1+1),(pi—1+2),....(pi—1)}

BQ = Ak

min
ke{(pi+1)7(pi+2)7"'7(pi+171)}
BO = min(Bl, B2)

if (Apz - Bl)(Apz - BQ) < )‘z(Apifl - BO)(APi+1 - BO) then
Erase p; from P
end if
end for

sp == s(P)




Step 3.3: Local magnitude absolute thresholding. The third method for removing false pulses is
based on some prior knowledge about the magnitudes of the pulses. Let By and By be respectively the
minimum values of Ay, for p;_1 < k < p; and p; < k < p;41. If the local magnitude of the i-th pulse (the
geometric mean of A,, — By and Ay, — Bs) is smaller than a chosen threshold \,, then it is removed from
the set of detected pulses.

Step 3.3. Local magnitude absolute thresholding:
fori=2,...,(s,—1) do

By = min
ke{(pi—14+1),(pi-1+2),...,(pi—1)}

By = min Ay,
ke{(pi+1),(pi+2),...,(pi+1—1)}
if (Ap, — B1)(Ap, — B2) < A2 then
Erase p; from P
end if
end for




Step 4: Retrieve missed pulses. To retrieve possible missed pulses, the data points lying between
each pair of detected pulses are examined. For each sample index j lying between the pulse occurrences
p; and p;41, the relative height of the sample A; is defined as the geometric mean of A; — By and A; — By,
where B; and By are respectively the lowest values of Ay for p; < k < j and for j < k < p;41. The
sample exhibiting the maximum relative height between p; and p;;; is compared with the geometric
mean of A(p;) — By and A(p;+1) — Bo, where By is the lowest sample value between p; and p;41. If the
comparison with respect to the threshold A, is conclusive, a new pulse is added to the set of detected
pulses. This process is repeated three times to deal with the case where several pulses might have been
missed between two consecutive previously detected pulses..

Step 4. Retrieve missed pulses.
for k=1,2,3 do
J=10
fori=1,...,(sp, — 1) do
if p; +3 < p;+1 then
for j = (pi +2),...,(pi+1 — 2) do

By = min Ay
ke{(pi+1),....5}
By = min Ay

ke{j,....(pi+1—1)}

Cj = (4; — B1)(A4; — B2)

end for

fmax := ar max C
Jma 8 el D=}

BO = min(Bl, Bg)
if ijax > )\3(14(192) — BO)(A(pi+1) — BO) then
Insert jmax into J
end if
end if
end for
Insert J into P
sp = s(P)
end for




Step 5: Removal of 3-point peaks. When the rhythm of the hormonal pulses accelerates, the IPI
may approach the sampling period Ts, to the point that it becomes impossible to reliably detect pulses.
In such situations, the sampled time series may exhibit local maxima supported by 3 consecutive data
samples. To avoid false detections, pulses detected upon 3 points are identified and possibly removed.
For a pulse detected at k = p;, if p;, — 1 and p; + 1 are local minima “sharp” enough, in the sense that
A(p; —2) — A(p; — 1) and A(p; +2) — A(p; + 1) are large enough compared to A(p;) — A(p; — 1) and
A(p;) — A(pi +1), then A,, is considered as a peak detected upon 3 points (referred to as “3-point peak”)
and is removed from the set of detected pulses.

Step 5. Remove pulses detected upon 3 data points:

sp == s(P)
fori=1,...,s, do
pi > 3, and p; <N -2,
if ¢ and A(pi—2)>A(pi—1), and A(p;) > A(p; — 1), then
and  A(p;) > A(p; + 1), and  A(p; +2) > A(pi + 1)

{[Alpi —2) — Alpi = D] + [A(pi +2) — Alpi + D]}/2

R :=
VIAp:) — Alpi — DI[A(p:) — A(pi + 1)]

if R > A3, then
Erase p; from P
end if
end if
end for

Step 6: IPI sequence and tunnel construction. Under some regularity assumptions of the IPIs,
the detected pulses leading to IPI outliers should be corrected. For this purpose, a cubic polynomial
0+ 012 + 0o 4 0323 is first fitted to the IPIs where 7 is equal to the shifted pulse index 4. Let (f, ..., 03)
be the value of (6, ..., 03) fitted to the segmented IPIs and ¢(x) = 8y + 012 + Oo2? + O323. The lower and
upper edges of the IPI tunnel are defined respectively by ¢ (x + S”z_l) (I1—a)and ¢ (m + ép_l) (1-7).

The centering of the i-indexes (leading to x;) is for the purpose of a better numerical accuracy.

Step 6. IPI sequence and tunnel construction:

sp == s(P)

fori=1,...,s,—1do

qi = Pi+1 — Pi

-1

T = p2

end for
sp—1
(69,61, 04,05) = arg (00,}.1’161?{1)611%4 ; (60 + 01 + 227 + O52) — qi]Q




Algorithm robustness to assay error

In our model of synthetic LH time series presented in the Methods section, we have introduced a multi-
plicative noise characterized by the random numbers pgssqy () € [—b, b] (see Equation 5 of the manuscript)
obtained from a quasi-uniform distribution. Of course, it is also possible to choose another statistical
distribution, such as the normal distribution with a prescribed standard deviation SD, to reproduce the
assay variance. We have run several tests to investigate the robustness of our algorithm on several trials
differing by the type of distribution (either uniform or normal), the maximum amplitude (in the uniform
case) or SD value (in the normal case) and the absence or introduction of dose-dependence.

We have assessed the ability of our algorithm to detect LH pulses in synthetic time series built with a
high, dose-independent variability. We have investigated both uniformly distributed (UD) and normally
distributed (ND) assay errors using the same set of values for the amplitude b of the uniform distribution
and the standard deviation SD of the normal distribution: 25%, 30%, 32%, 38% and 40%. In each case,
we have generated 10 synthetic LH time series by sampling, every 10 min, the theoretical signal with
the same pattern of decreasing pulse amplitude and decreasing interpulse interval as in case F of Figure
6. We have applied our algorithm with the default parameter values and we have analyzed its output
for each time series. Table S1 gives the corresponding number of time series, over the 10, for which the
outputs of the detection algorithm fall in one of the 3 following cases :

1. detection of every pulse duly associated with a spike, but no over-detection of artifact LH pulse
(well-detected time series),

2. detection of an extra, artifact pulse (over-detection) or missing of a genuine pulse (under-detection),
with a repercussion on the IPI series (IPI outlier),

3. over-detection or under-detection, without identifiable repercussion on the IPI series (no IPI outlier).

To illustrate these results, we have shown, in Figure S4, representative algorithm outputs obtained from
4 instances of simulated LH time series with either UD assay errors (b = 32 % and b = 38 %) or ND
assay errors (SD = 32% and SD = 38 %) respectively.

As shown in Table S1, for b = 20 % or SD = 20 %, the algorithm detected all the 20 time series
correctly. For b = 25 % or SD = 25 %, the algorithm failed rarely (1 case out of ten with UD assay errors
and none with ND assay errors). For b = 30 % or SD = 30 %, the algorithm remained reliable most of the
time: it failed twice in each distribution case, yet it detected the whole 16 other time series accurately.
It seems that over the critical b (resp. SD) value of 30%, the algorithm becomes more sensitive to the
assay variability: due to the high level of noise, the results are deprecated with b and SD set to 32%,
even if they remain relevant in half cases. Instances of time series obtained with b = 32% and SD = 32%
and the corresponding outputs of the algorithm (time series together with the detected pulse occurrences
and IPI series) where the detection goes well are shown in Figure S4. Over- or under-detections appear
in most of the outputs when the algorithm is applied to time series obtained with values of b or SD
above 35%. However, it is worth noticing that, even for extreme values of b or SD (38% or 40%), over-
or under-detections lead almost each time to IPI outliers (see bottom panels of Figure S4) that can be
handled in the same way as we do in the Results section.



