Supporting Information for ## A Mass Spectrometry Sensor for in vivo Acetylcholine Monitoring Peng Song^a, Neil Hershey^a, Omar Mabrouk^{a,b}, Tom Slaney^a, and Robert Kennedy^{a,b,*} | Figure S1 | Ion suppression of acetylcholine by salt in | |-----------|--| | | aCSF. | | Figure S2 | Carryover at the ESI probe | | Figure S3 | Acetylcholine trace in the first 30 min of neostigmine microinjection experiment | Figure S1 Ion suppression of d4-acetylcholine by the inorganic salt in aCSF shown by FIA coupled to ESI-MS/MS (150 \rightarrow 91). 50 nM d4-acetylcholine was dissolved in water (A), aCSF (B) and diluted aCSF (C). Ion intensity was shown on the top right corner. FIA flow rate was 100 μ L/min. Acquisition started right after sample injection. **Figure S2** Carryover at the ESI probe liquid connection characterized by infusing discrete droplets containing 1 μ M acetylcholine and then step decrease to 0 μ M using: (A) a low dead volume union and steel ESI needle; (B) a zero dead volume union and steel ESI probe; and (C) a zero dead volume union and modified fused silica ESI needle. ## Figure S3 **Figure S3** Acetylcholine traces during initial 25 min of dialysis probe insertion. Microdialysis probe was kept in blank aCSF before implantation (0-6 min). The spike of acetylcholine at 6 min was caused by tissue damage as the probe was inserted into the brain. Within a few min a stable signal was achieved.