
File S2: Analysis of the diploid model

By assuming Hardy-Weinberg proportions at every time instance, which requires sufficiently
weak evolutionary forces, the structure of the dynamical equations for the diploid model
becomes the same as that for the haploid model, Eq. (1),

ẋ1 = x1(w1 − w −m)− rD , ẋ2 = x2(w2 − w −m) + rD + m ,

ẋ3 = x3(w3 − w −m) + rD , ẋ4 = x4(w4 − w −m)− rD ,
(S.100)

but with the marginal fitness values

w1 = βx2 + αx3 + (α + β − γ1)x4,

w2 = β + βx2 + (α− γ1)x3 + (α + β − γ2)x4,

w3 = α + (β − γ1)x2 + αx3 + (α + β − γ3)x4,

w4 = α + β − γ1 + (β + γ1 − γ2)x2 + (α + γ1 − γ3)x3 + (α + β + γ1 − γ4)x4,

(S.101)

and the mean fitness

w = 2
�
βx2 + αx3 + (α + β− γ1)x4− γ1x2x3 + (γ1− γ2)x2x4 + (γ1− γ3)x3x4 + (γ1− γ4/2)x2

4

�
.

(S.102)
For the special case Γ = (γ/2, γ, γ, 2γ) and in linkage equilibrium (x1x4 = x2x3), we obtain
w = 2

�
βx2 + αx3 + (α + β − γ)x4

�
. In this case, the dynamical equations for the two-

dimensional system with p = x3 + x4 and q = x2 + x4 reduces precisely to the corresponding
equations for the haploid model. For all other choices of epistasis parameters, the dynamics
of the diploid model is much more complex. Therefore, our analytical results are incomplete.
They are presented below and, in more extensive form, in the supplementary Mathematica
OS.

S.9 Existence and linear stability of boundary equilibria

For m = 0, all four monomorphic equilibria exist and stability conditions can readily be
derived (see the Mathematica OS). We find the following conditions for asymptotic stability:

M1 : α < 0, β < 0, and r > α + β − γ1 , (S.103a)

M2 : α < γ2, β > 0, and r > α− β − γ1 , (S.103b)

M3 : α > 0, γ3 > β, and r > β − α− γ1 , (S.103c)

M4 : α > γ4 − γ2, β > γ4 − γ3, and r > γ4 − γ1 − α− β . (S.103d)

Compared with the haploid case, two additional boundary equilibria, denoted by S̃A and S̃B,
can exist for the diploid model if m = 0. These equilibria exist if locus A or B are over- or
underdominant when the derived allele (B or A) at the other locus is fixed. They can be
stable only in the case of overdominance. In particular, an overdominant equilibrium S̃A with
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coordinates p = (γ4−γ2−α)/(γ4−2γ2) and q = 1 exists if γ2 < α < γ4−γ2. An overdominant
boundary equilibrium S̃B with p = 1 and q = x4 = (1−x3) = (γ4−γ3−β)/(γ4−2γ3) exists if
γ3 < β < γ4−γ3. Note that overdominance is only a necessary, but not sufficient condition for
stability of S̃A or S̃B in the full model. Sufficient conditions can be derived from the Jacobian
(see the Mathematica OS) but result in complicated cubic equations for the eigenvalues.

If m > 0, boundary equilibria can exist only at the edges p = 0 (implying x3 = x4 = D = 0)
or q = 1 (i.e., x1 = x3 = D = 0) of the state space. The only monomorphic equilibrium to
fulfill this condition is M2 (fixation of the continental haplotype). For an arbitrary point on
the edge x3 = x4 = 0, the eigenvalues of the Jacobian are as follows:

λ1 = β − 2βx2 −m

λ2,3 =
1
2

�
β + 2α− r − γ1 − 2βx2 − γ2x2 − 2m

±
�

(β − r − γ1 + 2γ1x2 − γ2x2)2 + 4rx2(β − γ1 + 2γ1x2 − γ2x2)
�

(S.104)

Setting x2 = 1, we obtain the stability conditions for M2:

m > max[−β, α− β − γ1 − r, α− γ2]. (S.105)

As in the haploid case, these conditions correspond to the invasion criteria for the three other
haplotypes, ab, Ab, and AB. Additional boundary equilibria, with a single polymorphic locus,
can exist if m > 0. In Section S.13 below, we analyze the stability of these equilibria for a
particular choice of the epistasis parameters.

S.10 Global stability of the boundary

Here, we derive sufficient conditions for global convergence to the boundary. Alternatively,
these may be viewed as necessary conditions for the existence of a DMI (i.e., a stable internal
equilibrium). The following assumptions on epistasis will be required:

0 ≤ γ1 ≤ min[γ2, γ3] and max[γ2, γ3] ≤ γ4 , (S.106)

γ1 + γ4 ≥ γ2 + γ3 . (S.107)

Clearly, the recessive and the co-dominant model with Γ0 := (0, γ, γ, 2γ) and Γ1 := (γ/2, γ, γ, 2γ)
satisfy these assumptions. In addition, we shall need the following condition on the selection
parameters:

β ≥ max[γ2, γ3, γ4 − γ1] . (S.108)

Throughout the following, we always assume (S.106). The results below hold whenever
m ≥ 0 and r > 0.
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Theorem S.6. Each of the following assumptions ensures that all trajectories converge to an
equilibrium at the boundary of the state space S4:

(i)
α ≤ 0 and (S.107) ; (S.109)

(ii)
α ≥ 0 and (S.107) and (S.108) ; (S.110)

(iii)
m ≥ max[14α, α + γ1 − β, γ2 − γ3] and (S.107) . (S.111)

Remark S.5. In (i), assumption (S.107) is needed only for technical reasons. Without
it, internal equilibria could be excluded, but not limit cycles or other complex attractors.
Importantly, the proof shows that any internal equilibrium, hence every DMI, will be in
negative linkage disequilibrium.

It is not difficult to show that the assumption (S.108) in (ii) can be replaced by the weaker
assumption

β ≥ max[γ2 − α, γ3, γ4 − γ3, γ4 − γ1 − α] . (S.112)

The proof is based on several lemmas.

Lemma S.9. If m + γ1 + γ4 ≥ γ2 + γ3, then every ω-limit is contained in the set {D ≤ 0}.
Any internal ω-limit points have to satisfy D < 0. In particular, the conclusions apply if
m ≥ 0 and (S.107) hold.

For the proof, define
Z =

x2x3

x1x4
. (S.113)

Then the lemma follows from the identity

(x1x4)2Ż = rD(x1x2x3 + x2x3x4 + x1x2x4 + x1x3x4)

+ x1x3x4 {m + x2[x2(γ2 − γ1) + x3(γ3 − γ1) + x4(γ1 + γ4 − γ2 − γ3)]} . (S.114)

Lemma S.10. (i) Assume α ≤ 0 and D ≤ 0. Then (x1/x3)̇ ≥ 0, and the inequality is strict
in the interior of the state space.

This follows immediately from the identity

x2
3

�
x1

x3

�˙

= −αx1x3 − r(x1 + x3)D + x1x3[γ1x2 + (γ3 − γ1)x4], . (S.115)
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Lemma S.11. (i) Assume α ≤ 0 and D ≥ 0. Then (x2/x4)̇ ≥ 0, and the inequality is strict
in the interior of the state space.

This follows immediately from the identity

x2
4

�
x2

x4

�˙

= mx4 + r(x2 + x4)D − αx2x4

+ x2x4[γ1x1 + γ2x2 + (γ3 − γ1)x3 + (γ4 − γ2)x4] . (S.116)

Lemma S.12. Assume α + β ≥ max[γ2, γ3, γ4 − γ1]. Then (x1/x4)̇ ≤ 0 if D(x1 − x4) ≤ 0
and the set {x1 ≤ x4} is forward invariant.

The proof follows from the identity

x2
4

�
x1

x4

�˙

= rD(x1 − x4)− x1x4[x1(α + β − γ1) + x2(α + β − γ2)

+ x3(α + β − γ3) + x4(α + β − γ4 + γ1)] . (S.117)

Lemma S.13. Let
Y =

x1 + x3

x3 + x4
. (S.118)

Assume α > 0 and (S.108). Then Ẏ ≤ 0 on the set {x1 ≤ x4}.

The proof follows from the identity

(x3 + x4)2 Ẏ = −αx1(x3 + x4) + γ1x2x3(x1 − x4)− x4[x2
1(β − γ1) + x2(x1 + x3)(β − γ2)

+ x3(2x1 + x3)(β − γ3) + x1x4(β − γ4 + γ1) + x3x4(β − γ4 + γ3)] . (S.119)

Lemma S.14. Assume m ≥ max[α − β, γ2 − γ3]. Then (x2/x3)̇ ≥ 0 holds on the forward-
invariant set {x2 ≥ x3} ∩ {D ≤ 0}.

The proof follows from the identity

x2
3

�
x2

x3

�˙

= −rD(x2 − x3) + γ1x2x3(x2 − x3) + mx3(x1 + x3) + mx3x4(x1 + x3 + x4)

+ (m− α + β)x2x3 + (m + γ3 − γ2)x2x3x4 . (S.120)

Lemma S.15. Let
X =

x1 + x3

x1 + x2
. (S.121)

Assume α > 0 and m ≥ max[14α, α + γ1 − β, γ2 − γ3]. Then Ẋ ≤ 0 on the set {x3 ≥ x2}.
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This statement follows from the identity

(x1 + x2)2 Ẋ = −m(x1 + x3)2 + αx1x3 − (m− α− γ1x3 + β)x2x3 − (m + β)x1x2

− (m− γ2 + γ3)x2x4(x1 + x3) + γ1x
2
2x

2
3 + (γ3 − γ1)x1x4(x3 − x2) (S.122)

because −m(x1 + x3)2 + αx1x3 ≤ −1
4α[(x1 + x3)2 − 4x1x3] = −1

4α(x1 − x3)2 ≤ 0.

Proof of Theorem S.6. (i) We start by noting that, because we assume r > 0, the only
positive-invariant subsets of the boundary are the four edges of the simplex corresponding
to fixation of one of the alleles. On these edges, convergence to equilibrium occurs always.
Hence, it is sufficient to consider the fate of solutions starting in the interior of the state space.

The first statement follows immediately from Lemmas S.10 and S.11. For the second
statement, Lemma S.9 guarantees that every ω-limit is contained in the positive-invariant set
{D ≤ 0}, whence Lemma S.10 yields the result.

(ii) By Lemma S.9, it is sufficient to show that there are no ω-limit points satisfying
D < 0. Because {D ≤ 0} is forward invariant, Lemma S.12 shows that all trajectories in
{x1 ≥ x4} ∩ {D ≤ 0} enter the region {x1 ≤ x4} ∩ {D ≤ 0} and remain there. Now Lemma
S.13 yields the result.

(iii) By Lemma S.9, it is sufficient to show that there are no ω-limit points satisfying
D < 0. Application of Lemmas S.14 and S.15 yields the assertion.

Remark S.6. The following simple results can also be proved:

1. If (S.107) and α + β ≥ max[γ2, γ3, γ4 − γ1] hold, then any DMI (if it exists) satisfies
D < 0 and x1 ≤ x4.

2. If (S.107) and α + β ≤ min[γ2, γ3, γ4 − γ1] hold, then any DMI (if it exists) satisfies
D < 0 and x1 ≥ x4.

Under the assumption of linkage equilibrium, the dynamical equation for p can be written
as

ṗ = p
�
α−m− αp− q(1− p)

�
2γ1(1− q)(1− p) + γ2q(1− p)

+ 2(γ3 − γ1)p(1− q) + (γ4 − γ2)pq
��

. (S.123)

We thus see that p is a Lyapunov function and p(t) → 0 as t → ∞ if γ4 ≥ γ2, γ3 ≥ γ1, and
m > α (here it is not necessary to assume (S.106), (S.107), or (S.108)).
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S.11 Tight linkage

Arguments analogous to those in Section S.8.1 yield that, if r = 0,

V = V (x1, x2, x3, x4) = 1
2w + m lnx2 (S.124)

is a Lyapunov function, whence the dynamics is gradient-like. Again, the proof of Theorem
2.3 in Nagylaki et al. (1999) applies and shows that for sufficiently small r every trajectory
converges to an equilibrium point (provided every equilibrium of the unperturbed system is
hyperbolic). For small r, the asymptotically stable equilibria are obtained by perturbation of
the asymptotically stable equilibria for r = 0. In particular, if there is a unique asymptoti-
cally stable equilibrium for r = 0, then its perturbation is globally asymptotically stable for
sufficiently small r. It is worth emphasizing that this holds for arbitary fitness assignments
(such that all equilibria are hyperbolic).

S.12 Internal equilibria: Weak migration

In addition to our results from Lyapunov functions, we obtain conditions for the existence of
a DMI under weak migration from perturbation arguments. On the one hand, the existence
of a stable equilibrium with positive frequency of the island haplotype (x3 > 0) for m = 0
implies the existence of a DMI for sufficiently small m > 0. On the other hand, if a stable
equilibrium with x3 > 0 does not exist if m = 0, a DMI cannot be maintained for small m.

Extensive computer simulations confirm that there are always uniquely defined maximum
rates of gene flow, m±

max, which separate the domains in which a locally or globally stable
DMI exists (if m < m±

max) from the region in which a DMI does not exist (m > m±
max). We

note that although this conjecture is highly plausible, we do not have a rigorous proof beyond
the cases treated in the previous section. These arguments imply that m+

max > 0 if there is
a stable equilibrium with x3 > 0 for m = 0, and m+

max = 0, otherwise. Similarly, we can
conclude that m−

max > 0 if the only stable equilibrium for m = 0 is one with x3 > 0.

Our numerical analysis of the diploid model (see the Mathematica OS) indicates that for
m = 0 there are no stable equilibria in the interior of the state space. As we have seen above,
two boundary equilibria with x3 > 0 may exist if m = 0: the monomorphic equilibrium M3

and the single-locus polymorphism S̃B. A necessary condition for the asymptotic stability of
at least one of these boundary equilibria is

β < max[γ3, γ4 − γ3] . (S.125)

Given our numerical evidence, this translates into a necessary condition for a stable DMI
(hence, for m+

max > 0) with weak migration. We note that this condition is slightly more
stringent than the negation of (S.108). In addition, we already know from Theorem S.6 that
α > 0 is another necessary condition.
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Sufficient conditions for m+
max > 0 can, in principle, be derived from a full linear stability

analysis of M3 and S̃B for m = 0. In general, however, the conditions for the stability of S̃B
are not transparent. For the special case of independent loci (r → ∞), we find that S̃B is
stable if and only if γ3 < β < γ4 − γ3 and α > α∗, where

α∗ =
(β − γ3)[2(γ3 − γ1)(γ4 − γ3 − β) + (β − γ3)(γ4 − γ2)]

(γ4 − 2γ3)2
. (S.126)

Note that α∗ > 0 if γ3 < β < γ4 − γ3.

If we exclude overdominance at the locus B (and, hence, S̃B can not be stable) further
analytical results can be derived. In particular,for weak migration, any stable DMI must be a
perturbation of the island equilibrium M3. A perturbation analysis to first order in m yields
the coordinates {x1, x2, x3} of PM3:

PM3 :
�

mr

α (r + α− β + γ1)
,

m

r + α− β + γ1
, 1− m (rα + (r + α) (γ3 − β))

α (r + α− β + γ1) (γ3 − β)

�
. (S.127)

The coordinate x3 measures the level of population differentiation which is analyzed further
in the main text.

For all our analytical and numerical derivations, we have assumed that the epistasis coef-
ficients are non-decreasing with the number of A/B conflicts, i.e., 0 ≤ γ1 ≤ min[γ2, γ3] and
max[γ2, γ3] ≤ γ4. This condition is essential for our results. Additional internal equilibria can
be found for other choices of the γi. In particular, we found numerically that stable internal
equilibria are possible for α = β = 0 (and even for α < 0) if γ1 � min[γ3, γ4] (for examples
see the Mathematica OS).

S.13 Stability conditions for the recessive and the co-dominant model

Here, we consider the diploid model with the simplified epistasis scheme Γ = (γ1, γ, γ, 2γ).
Obviously, both the recessive model with Γ0 = (0, γ, γ, 2γ) and the co-dominant model with
Γ1 = (γ/2, γ, γ, 2γ) follow this scheme. In the following lemma, we collect some important
consequences for this choice of the epistasis parameters. They all follow from our above
analysis and elementary calculations.

Lemma S.16. Elementary facts for the diploid model with Γ = (γ1, γ, γ, 2γ).

1. Overdominance or underdominance of single loci does not occur.

2. The model is symmetric under the exchange of the haplotypes ab and AB. As in the
haploid case, this symmetry is reflected by an invariance of the model under the trans-
formation α→ γ − β and β → γ − α.
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3. α > 0 and γ > β are necessary conditions for the existence of a DMI.

In the absence of overdominance, we find that the boundary equilibria SA and SB exist
under the same conditions and with the same coordinates as in the haploid case (Section S.1).
The stability conditions are different, however. Evaluation of (S.104) at x2 = −m/β leads to
the stability conditions for SB. In analogy to (S.10), explicit bounds on the migration rate
m can be derived, however, the expressions are lengthy. Due to the model symmetry, the
stability conditions for the SA equilibrium can be obtained directly from the corresponding
conditions for SB. For explicit results, we focus on the limiting cases with r = 0 and r →∞.
We always assume α > 0 and γ > β.

If r = 0, the equilibrium SB is asymptotically stable if and only if

−β > m > max
�
−β(β + 2α− γ1)

γ
,

−β
�
αγ + βγ1 − γ2

1 +
�

(αγ + βγ1 − γ2
1)2 − 4αγ1(γ − γ1)(β + α− γ1)

�

2γ1(γ − γ1)

�
.

(S.128)

For independent loci (r → ∞), and assuming γ ≥ γ1, the stability condition for SB can be
expressed as

−β > m >
−β

�
β − 2γ1 +

�
(2γ1 − β)2 + 4α(γ − 2γ1)

�

2(γ − 2γ1)
, (S.129)

For the recessive model, in which γ1 = 0, we can summarize the stability conditions for
the boundary equilibria as follows. If r = 0, condition (S.128) can never be fulfilled and the
equilibria SA and SB are never stable. The monomorphic equilibrium M2 is stable if and only
if m > α− β. For r →∞, the stability conditions for the three boundary equilibria are

M2 : m > max[−β, α− γ], (S.130a)

SA : α− γ > m > (α− γ)
γ − α +

�
(γ − α)2 + 4γ(γ − β)

2γ
, (S.130b)

SB : − β > m > −β
β +

�
β2 + 4αγ

2γ
. (S.130c)

For the co-dominant model, in which γ1 = γ/2, we obtain for r = 0:
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M2 : m > max[−β, α− β − γ/2, α− γ], (S.131a)

SA : α− γ > m >
2(γ − β)(α− γ)

γ
, (S.131b)

SB : − β > m >
−2αβ

γ
. (S.131c)

As noted above, the dynamics of the co-dominant diploid model coincides with the haploid
dynamics in the limit r → ∞. Thus, also the stability conditions and maximum rates of
gene flow coincide and can be taken from there (Eqs. (10)–(12) in the main text). Using our
results for the stability of boundary equilibria for the recessive and the co-dominant model, the
analytical results for the maximum rate of gene flow m−

max in the Section Results: Diploid

Model of the main text can easily be derived.

In addition, explicit results for m+
max for the co-dominant model with tight linkage can be

deduced. Their derivation is provided in the supplementary Mathematica OS.
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