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Oscillatory input spike trains versus instantaneous correlation

Here we compare the correlation strengths of spike coordination (used in the main text) and periodic rate
covariation. We focus on spiking activity that simply arises from oscillatory instantaneous firing rates
that have the same frequency. We show how spike-time correlations between such spike trains contain
information about their common frequency, which affects the STDP dynamics.

We consider the situation where the postsynaptic neuron in Fig S2A receives input from two pools,
pool 1̄ having instantaneous correlations and pool 2̄ exhibiting an oscillatory population firing rate. The
input spike trains Si(t) from pool 2̄ are generated by an oscillatory rate function with frequency f , as
sketched in Fig S2A:

ρi(t) = ν0 [1 + cos(2πft)] . (S1)

The corresponding mean firing rate is νi(t) = 1/T
∫ t

t−T
ρi(t

′) dt′ ≃ ν0 = 10 sp/s, when the averaging
period T is sufficiently large (fT ≫ 1). Periodic spiking activity induces spike-time correlations between
inputs, as shown in in Fig S2B. The covariance function Cij defined for two inputs i and j is given by

Cij(t, τ) =
1

T

∫ t

t−T

ν20 [1 + cos(2πft′)] [1 + cos(2πft′ + 2πfτ)] dt′ − ν20 ≃ ν20
2

cos(2πfτ) (S2)

In the expression for Cij(t, τ) ≃ Cij(τ), only the product of the cosine functions contribute, carrying
information about f . Like the firing rate, the spike-time covariance is almost independent of the time
variable t for sufficiently large T . We have used cosine functions for simplicity of calculation, but any
quasi-periodic function could be used here. Note that periodic spike trains with distinct non-harmonic
frequencies would have a flat correlogram. Phase shifts between oscillatory inputs would also appear in
(S2), but this will no be examined here. Detailed epxressions for the firing rates and correlations above
are provided Methods; see (34) and (35).

Combining (4) in the main text and (37) in Methods, the corresponding coefficient for inputs i and
j belonging to the oscillatory pool 2̄ is a cosine transform of the kernel χ assumed to be identical for all
synapses:

Cχ
ij ≃

∫ +∞

−∞

χ
(

τ − 2dden
) ν20

2
cos(2πfτ) dτ =

ν20
2

ℜ
{

χ̂(f) exp
(

4πiddenf
)}

, (S3)

where ℜ denotes the real part of complex numbers, i =
√
−1 and the hat denotes the Fourier transform

ĝ(f) =
∫ +∞

−∞
g(τ) exp(−2iπτf) dτ .
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To predict the weight evolution, we compare the covariance C̄χ for each pool, as illustrated in Fig S2C.
We adjust the correlation strength of pool 1̄ such that the STDP effects are comparable for both pools.
The dashed and dashed-dotted horizontal lines correspond to c̄1 = 0.05 and 0.025, respectively. Because
the STDP effect evaluated in (S3) depends on the input frequency f , so does the synaptic competition
between the two pools. Note that high frequencies outside the range of STDP, f ≥ 100 Hz here, lead
to very weak contributions. The difference between the mean weights from pools 2 and 1 is plotted in
Fig S2D after 500 s of simulation. Positive values indicate that the oscillatory pool wins. The simulation
results agree with the prediction that the oscillatory pool wins when the solid curve is above the horizontal
line corresponding to c̄1. Circles and crosses in Fig S2D correspond to the dashed and dashed-dotted
lines in Fig S2C, respectively. As a result, the frequency band for which the neuron is sensitive can be
adjusted via c̄1. Note that we use add-STDP+SCC as the correlation strengths are rather weak here.

The dendritic delay dden shifts both the learning window W and the PSP response kernel ǫ, such that
its lumped effect for feedforward connections is twice the shift, cf. (4) in the main text. Recall that, in
contrast, the effects of axonal delays eventually cancel out. The curves of (S3) for various delays and
time constants are plotted in Fig S2E. The frequency dependence of the STDP specialization can be used
to build a neuronal frequency selector. An in-depth study of the weight dynamics for inhibitory STDP
can be found in Gilson et al. [1] where both heterogeneous delays and PSP time constants are used.
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Figure S2. Competition between instantaneous correlations and oscillatory firing rate. (A)
Schematic representation of a single neuron stimulated by pool 1̄ with instantaneous correlations and
pool 2̄ with an oscillatory firing rate (frequency f). Their respective cross-correlograms are represented
in red and blue. (B) Plot of the correlogram Cij(τ) between two oscillatory inputs from pool 2̄ (blue
trace). The two spike trains were simulate for 1000 s and the time bin for the x-axis is 1 ms. The
predicted curve (black dashed line) corresponds to (S2): a cosine function with frequency f = 20 Hz
and amplitude ν20/2 with ν0 = 10 sp/s. (C) Theoretical prediction of the mean input-neuron correlation
coefficients C̄χ for each input pool. The blue solid curve corresponds to the oscillatory pool 2̄ and varies
with the frequency f , cf. (S3). The red dashed and dashed-dotted horizontal lines represent the
instantaneous correlation of 1̄ for c̄1 = 0.05 and 0.025, respectively; cf. (??). The input firing rate is
ν0 = 10 sp/s for both pools. (D) Plots of the difference between the mean weights after 500 s of
simulated time. Purple circles and green crosses correspond to c̄1 = 0.05 (dashed line in B) and 0.025
(dashed-dotted line in B), respectively. Positive values indicate that the oscillatory pool is the winner at
the end of the learning epoch. (E) Effect of dendritic delays on the STDP effect. The solid line is the
same as in the case with dden = 0, whereas the dashed and dashed-dotted curves correspond to
dden = 1.5 and dden = 3 ms, respectively.


