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Algorithm for Asymptotically Close-Packed Bundles. Here, we de-
scribe the deterministic algorithm used to construct the core
packing of asymptotically close-packed twisted bundles. This
algorithm proceeds by sequentially adding new filaments to an
existing cluster of close-packed filaments. In essence, it is based
on Rubinstein and Nelson’s 2D generalization (1, 2) of Bennett’s
algorithm of close-packed clusters of spheres in 3D (3). Given a
cluster of close-packed filaments, the algorithm proceeds as fol-
lows. First, it searches for all available pockets of close contact on
the surface of the cluster. A pocket is defined by the position of a
filament center that is in contact with two filaments of the cluster
(where contact is defined by the condition Δ� ¼ d) and that is
nonoverlapping (Δ� ≥ d) for all other filaments in the cluster.
After the list of available pockets is tabulated, a new filament
is added to the cluster in the pocket furthest from the bundle cen-
ter. The algorithm repeats until the core the bundle has no avail-
able filament pockets.

To generate bundle packings that are asymptotically dense, we
seed the packing with an initial “collar” of filaments at a large
radius, which is consistent with the hexagonal symmetry of close
packed at ρ → ∞. To construct this collar, we exploit the fact that
the metric geometry of bundles becomes nearly Euclidean, with
the topology of a cylinder, far from the bundle core Ωρ ≫ 1. The
integer pair ðn; mÞ defines the wrapping vector, Pðn; mÞ, as in
Eq. 10. As shown in Fig. S1, starting from an initial position
in the hexagonal lattice of spacing d, n disks are arrayed along
the lattice vector a1 followed by m disks arrayed along the lattice
vector a2. Identifying the first and last lattice position in this se-
quence, separated by the vector Pðn; mÞ, the array of nþm disks
is rolled up along Pðn; mÞ into a collar encircling a cylindrical sur-
face (see Fig. S1). Placing the initial disk at an arc distance, 5P þ
δρ from the pole of the bundle-equivalent dome, the radial and
angular positions of disks in the collar are used to define the
initial cluster of filaments in the packing. The value of δρ is dis-
cussed below. We assume that the packing maintains the hexago-
nal geometry of the initial collar for filaments further from the
core, so that regions outside of this collar are fully packed,
and further filaments are only added at positions within this
initial collar until the core is fully occupied.

To measure the density of packing within the core of the bun-
dle, defined to be a region within a radial distance ρcore ¼ 3P
from the bundle center, we calculate the occupied area within
the filament cross-sections in this central region, AðρcoreÞ. The
volume fraction of the core is simply ΦðρcoreÞ ¼ AðρcoreÞ∕
πρ2

core. Because of periodic oscillations in the number of filaments
intersected by the core boundary, the value of area (or volume)
fraction is highly sensitive to the value of ρcore, exhibiting oscilla-
tions on length scales corresponding to the periodic symmetry of
the packing far from the core (as shown in Fig. S1). To construct a
measure of packing fraction less sensitive to the well-packed
structure at the boundary of the core, we define the packing frac-
tion as the average ofΦðρcoreÞ over the narrow range of core radii
3P − δ∕2 < ρcore < 3P þ δ∕2,

Φ ¼ 1

δ

Z
δ∕2

−δ∕2
dρcoreΦðρcoreÞ; [S1]

where δ ¼ d sinðψ þ π∕3Þ defines a radial shift of the packing
consistent with the hexagonal symmetry of asymptotic close pack-
ing. Here, sinψ ¼ jna1 × ma2j, as shown in Fig. S1. Fig. S2 shows
that this definition of packing fraction varies smoothly with the

core radius, providing a more robust measure of packing effi-
ciency in the bundle.

Given the initial collar configuration, the packing algorithm
fills the core via a deterministic sequence of filament additions.
However, whereas the packing density of the bundle outside of
the collar is degenerate with respect to changes of initial radial
position of the collar filaments, the core packing structure of
the bundle is highly sensitive to shifts in δρ. Thus, for a given
integer pair ðn; mÞ, the packing algorithm is repeatedly per-
formed with the initial collar position shifted over a narrow range
−δ∕2 < δρ < þδ∕2. The optimal packing geometry corresponds
to the largest value ofΦ achieved for this sequence of collar radii.

Triangulation of Twisted Bundle Packings. Interfilament distance in
twisted bundles is not preserved when the cross-sectional packing
is projected into the plane (as in a horizontal cross-section of the
bundle shown in Fig. S1), and hence, determination of the near-
est-neighbor bond network requires some care. A very efficient
and sufficiently accurate method is to map the filament positions
onto the plane via a coordinate transformation that rescales local
interfilament distances in different directions (radially and azi-
muthally) by nearly equivalent amounts and then perform the
standard planar Delaunay triangulation on the transformed
array. That is, we use the isothermal coordinate map of filament
position ðρ; ϕÞ in the horizontal section to position ðρ̄; ϕÞ in the
plane. Such transformation is conformal and, as a consequence, it
maps infinitesimal circles on the dome to circles in the plane. For
sufficiently small, but finite-size, circles (i.e., d∕P ≲ 1), the
Delaunay triangulation of the mapped positions will give the
identical connectivity of nearest neighbors as a triangulation
based on true geodesic distances on the bundle-equivalent dome.

The coordinate transformation is described by the function
ρ̄ðρÞ that transforms twisted bundle metric of Eq. 5 into the fol-
lowing form,

ds2 ¼ ω2ðρ̄Þðdρ̄2 þ ρ̄2dϕ2Þ; [S2]

where ωðρ̄Þ describes the conformal scaling of area elements.
This transformation satisfies

ρ̄
∂ρ̄
∂ρ

¼ Ω−1 sin θðρÞ; [S3]

from which we find

ρ̄ ¼ ρ

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðΩρÞ2

p e
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þðΩρÞ 2

p
; [S4]

and ωðρÞ ¼ ½1þ cos θðρÞ�esec θðρÞ. In Fig. S3, we show the planar
section of a ð5; 5Þ bundle as well as the conformal transform of
the cross-section and corresponding triangulation. Note that, for
this bundle, d∕P ¼ 0.12, so that filament cross-sections are very
nearly circular in the projection.

Energy Minimization of Self-Assembled Twisted Filament Bundles.
Here, we detail the protocol for numerically minimizing the en-
ergy of adhesive filament bundles. For a given filament number,
N and helical twist, Ω, every minimization was initialized with a
random distribution of filament positions in the 2D plane. Given
the in-plane coordinates of all filaments, the in-plane gradients
of the total energy with respect to filament positions (the forces)
are calculated making use of the analytical approximation for
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vertical offset of close contact, or z�, given in [12]. The algorithm
updates the positions of every filament via steepest descent, and
recalculates the forces at each step. To keep the center of rotation
at the geometric center of the bundle, the total force acting on the
center of mass of the cross-section is removed from the update,
and the center of mass remains at the x ¼ 0 center of rotation.

Because of the many mechanically stable local minimal energy
of twisted filament clusters, we augmented the steepest-descent
method with a specialized annealing step that systematically re-
distributes filaments in an attempt to fill in internal voids that are
a common feature in the initially quenched structures. In this
routine, after a minima is reached by standard steepest decent,
a high-energy filament along the outer edge of the bundle is
moved to fill a potential void. The system is then allowed to relax
again and, if the new final energy is lower, the move is kept, else it
is undone. This process is repeated until all potentially unfavor-
able voids are filled. For the purposes of efficiency, interfilament
forces are truncated beyond a cutoff distance of 4d. Interfilament
forces are implemented via a Verlet neighbor list, which is com-
pletely regenerated after any filament has moved a maximum
of 1d. Once a suitable minima is reached, the interaction cutoff
is removed for the final relaxation step.

We find the number of local energy minima appears to grow
exponentially with the system size, a feature seemingly common
among systems that include defects in their lowest energy pack-
ings, such as the Thomson problem, where repulsive particles are
packed on the surface of a sphere (4). To overcome this compli-
cation, a large number of copies of the same simulations (with
constant N and Ω) are performed with different random initial
configurations. The exact number of copies is set to increase
exponentially with system size from 300 (for N ¼ 16) to 2,000

(for N ¼ 100). All simulations with N ≥ 100 were run at a max-
imum of 2,000 copies. The complexity of the energy landscape
can be seen in Fig. S4, which shows the distribution of local en-
ergy minima resolved by the algorithm for a particular bundle size
and twist. Given the huge number of the minima in the complex
energy landscape of a large twisted bundle, it is possible that even
the larger number (approximately 103) of initial configurations
used here is insufficient to resolve absolute lowest global energy
states (especially for large N). Notwithstanding the unavoidable
roughness of the ground-state manifold of frustrated crystals, we
find that all states within a neighborhood of the global minima are
characterized by equal, or nearly equal, geometry as measured by
Q and R, total disclination charge and bundle radius, respec-
tively. Thus, with the number of simulated quenches used here
for a given bundle size and twist, we obtain multiple “nearly mini-
mal-energy” filament packings that nevertheless accurately repre-
sent the geometry of the true global energy minimum.

Final simulation results are subject to a Delaunay triangulation
of the isothermal coordinate map of the filament positions (de-
scribed above). This triangulation method always produces a
bond network with a convex boundary of bonds encompassing
the entire bundle. However, in many cases, this triangulation
includes extra-long bonds that bridge naturally concave sections
of the hull. Because these bonds exist as an artifact of the trian-
gulation and not as a product of the governing interaction energy,
bonds along the boundary with Δ� ≥ 1.4d are removed from the
triangulation. From this final triangulation, simulation results are
then classified by their radius R∕d, net disclination chargeQ, and
total disclination number. R was calculated to be the mean dis-
tance from the center of mass of every filament along the outer
hull of the cross-section.
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Fig. S1. (Left) The hexagonal packing in the initial collar used to seed the deterministic packing of the asymptotically closed-packed ðn; mÞ structure. (Right)
The packing indicates wrapping of the collar, described by vector, P, around the cylindrical geometry of the bundle-equivalent dome far from the core.
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Fig. S2. The black data points show the value of core packing fraction vs. core radius for a ð5; 5Þ close-packed bundle. The short length scale, δ, modulations of
ΦðρcoreÞ derive from periodicity of hexagonally packing in asymptotically dense regions. To achieve ameasure of core density less sensitive to the intersection of
boundary packing with the core radius, core fraction is averaged over the domain of core radii shown in gray. This boundary averaging leads to the red curve,
which depicts the value of Φ given in Eq. 1 and used in our density calculations.

horizontal section conformal map

Fig. S3. On the left is shown the horizontal section of a ð5; 5Þ twisted bundle and, on the right, the conformal mapping of the that section described by Eq. 4
with the corresponding Delaunay triangulation connecting the mapped centerline positions.

Fig. S4. Each data point is the result of simulated quenches with N ¼ 80, Ω ¼ 0.15, and random initial starting filament locations. There are 1,000 simulations
total, of which just six achieve the ground-state energy. Only the lowest energy result is retained for full analysis.
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