## SUPPLEMENTAL DATA

| SUPPLEMENTAL TABLE 1. SPR Re   | ą binding | g responses | of | chimeric | anti-CEA | scFv-Fc |
|--------------------------------|-----------|-------------|----|----------|----------|---------|
| variants to immobilized mFcRn. |           |             |    |          |          |         |

| Fragment    | Req (mFcRn)<br>110 RU <sup>a</sup> | Req (mFcRn)<br>900 RU <sup>a</sup> | Average relative binding <sup>b</sup> |
|-------------|------------------------------------|------------------------------------|---------------------------------------|
| WT          | 54                                 | 212.8                              | 1.0                                   |
| H435R       | 57.1                               | 236.8                              | 1.09                                  |
| H435Q       | 16.9                               | 73.4                               | 0.33                                  |
| I253A       | 5                                  | 34.3                               | 0.13                                  |
| H310A       | 2.3                                | 11.7                               | 0.05                                  |
| H310A/H435Q | NB <sup>c</sup>                    | 2.1                                | 0.01 <sup>d</sup>                     |

<sup>a</sup> Resonance unit (RU) responses of duplicate injections of the scFv-Fc variants over levels of immobilized recombinant soluble mFcRn at two densities.

<sup>b</sup> Relative binding based on the equilibrium binding response (Req) average from two different immobilized densities of mFcRn.

<sup>c</sup> No binding, (NB). <sup>d</sup> High density surface only.

SUPPLEMENTAL TABLE 2. SPR Req binding responses of chimeric anti-CEA scFv-Fc variants to immobilized hFcRn.

| Fragment    | Req (hFcRn)<br>320 RU <sup>a</sup> | Req (hFcRn)<br>1200 RU <sup>a</sup> | Average relative binding <sup>b</sup> |
|-------------|------------------------------------|-------------------------------------|---------------------------------------|
| WT          | 105                                | 244.1                               | 1.0                                   |
| H435R       | 110                                | 306.6                               | 1.15                                  |
| H435Q       | NB <sup>c</sup>                    | NB                                  | -                                     |
| I253A       | NB                                 | 9.1                                 | 0.04 <sup>d</sup>                     |
| H310A       | NB                                 | NB                                  | -                                     |
| H310A/H435Q | NB                                 | NB                                  | -                                     |

<sup>a</sup>Resonance unit (RU) responses of duplicate injections of the scFv-Fc variants over immobilized recombinant soluble hFcRn at two densities.

<sup>b</sup>Relative binding based on the equilibrium signal level (Req) average from two different immobilized densities of hFcRn.

<sup>c</sup> No binding (NB). <sup>d</sup> High density surface only.

SUPPLEMENTAL TABLE 3. Statistics (2-way ANOVA analysis) of the blood activity curves of <sup>123</sup>I-labeled scFv-Fc fragments in human FcRn transgenic mice.

|             |             |          | Significance |
|-------------|-------------|----------|--------------|
| WT Balb/c   | hFcRnTg     | P value  | <0.01 (99%)  |
| WT          | WT          | 0,0068   | YES          |
| H435R       | H435R       | < 0.0001 | YES          |
| H435Q       | H435Q       | < 0.0001 | YES          |
| I253A       | I253A       | 0,0004   | YES          |
| H310A       | H310A       | 0,0038   | YES          |
| H310A/H435Q | H310A/H435Q | 0,051    | NO           |

| hFcRn<br>mFcRn | MGVPRPQPWALGLLLFLLPGSLGAESHLSLLYHLTAVSSPAPGTPAFWVSGWLGPQQYLS 60<br>MGMPLPWALSLLLVLLPQTWGSETRPPLMYHLTAVSNPSTGLPSFWATGWLGPQQYLT 58<br>**:* ****.***.*** : *:*:: .*:**********                                               |
|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| hFcRn<br>mFcRn | YNSLRGEAEPCGAWVWENQVSWYWEKETTDLRIKEKLFLEAFKALGGKGPYTLQGLLG 118<br>YNSLRQEADPCGAWMWENQVSWYWEKETTDLKSKEQLFLEALKTLEKILNGTYTLQGLLG 118<br>***** **:*****:***********************                                              |
| hFcRn<br>mFcRn | CELGPDNTSVPTAKFALNG <b>EE</b> FMNFDLKQGTWGGD <b>W</b> PEALAISQRWQQQDKAANKELTFL 178<br>CELASDNSSVPTAVFALNG <b>EE</b> FMKFNPRIGNWTGEWPETEIVANLWMKQPDAARKESEFL 178<br>*****:***** ************: : *.* *:***: ::: * :* .** ** |
| hFcRn<br>mFcRn | LFSCPHRLREHLERGRGNLEWKEPPSMRLKARPSSPGFSVLTCSAFSFYPPELQLRFLRN 238<br>LNSCPERLLGHLERGRRNLEWKEPPSMRLKARPGNSGSSVLTCAAFSFYPPELKFRFLRN 238<br>* ***.** ****** **********************                                            |
| hFcRn<br>mFcRn | GLAAGTGQGDFGPNSDGSFHASSSLTVKSGDEHHYCCIVQHAGLAQPLRVELESPAKSSV 298<br>GLASGSGNCSTGPNGDGSFHAWSLLEVKRGDEHHYQCQVEHEGLAQPLTVDLDSSARSSV 298<br>***:*:*: . ***.***** * * ** ****** * *:* ****** *:*:***                           |
| hFcRn<br>mFcRn | LVVGIVIGVLLLTAAAVGGALLWRRMRSGLPAPWISLRGDDTGVLLPTPGEAQDADLKDV 358<br>PVVGIVLGLLLVVVAIAGGVLLWGRMRSGLPAPWLSLSGDDSGDLLPGGNLPPEAEPQGA 358<br>*****:*:**:* .**.*** ****************                                             |
| hFcRn<br>mFcRn | NVIPATA 365<br>NAFPATS 365<br>*.:***:                                                                                                                                                                                     |

**SUPPLEMENTAL FIGURE 1.** CLUSTAL multiple amino acid alignment of mouse and human FcRn HC. Amino acids E115, E116 and W131 are highlighted in red (human numbering). Alignment score: 66%.

## A.

| hIgG1 | EPKSCDKTHTCPP                                                                  | 13  |
|-------|--------------------------------------------------------------------------------|-----|
| hIgG3 | ELKTPLGDTTHTCPRCPEPKSCDTPPPCPRCPEPKSCDTPPPCPRCPEPKSCDTPPPCPR                   | 60  |
| hIgG2 | ERKCCVECPP                                                                     | 10  |
| hIgG4 | ESKYGPPCPS                                                                     | 10  |
|       | * * **                                                                         |     |
|       |                                                                                |     |
| hIgG1 | CPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAK                   | 73  |
| hIgG3 | CPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVQFKWYVDGVEVHNAK                   | 120 |
| hIgG2 | CPAPPVAG-PSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVQFNWYVDGVEVHNAK                   | 69  |
| hIgG4 | CPAPEFLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAK                   | 70  |
| -     | **** . * ******************************                                        |     |
|       |                                                                                |     |
| hIqG1 | TKPREEQYNSTYRVVSVLTVL <b>H</b> ODWLNGKEYKCKVSNK <b>ALPAPI</b> EKTISKAKGOPREPOV | 133 |
| hIqG3 | TKLREEOYNSTFRVVSVLTVLHODWLNGKEYKCKVSNKALPAPIEKTISKAKGOPREPOV                   | 180 |
| hIqG2 | TKPREEOFNSTFRVVSVLTVVHODWLNGKEYKCKVSNKGLPAPIEKTISKTKGOPREPOV                   | 129 |
| hIqG4 | TKPREEOFNSTYRVVSVLTVLHODWLNGKEYKCKVSNKGLPSSIEKTISKAKGOPREPOV                   | 130 |
| 2     | ** ************************************                                        |     |
|       |                                                                                |     |
| hIqG1 | YTLPPSREEMTKNOVSLTCLVKGFYPSDIAVEWESNGOPENNYKTTPPVLDSDGSFFLYS                   | 193 |
| hIqG3 | YTLPPSREEMTKNOVSLTCLVKGFYPSDIAVEWESNGOPENNYNTTPPMLDSDGSFFLYS                   | 240 |
| hIqG2 | YTLPPSREEMTKNOVSLTCLVKGFYPSDIAVEWESNGOPENNYKTTPPMLDSDGSFFLYS                   | 189 |
| hIqG4 | YTLPPSOEEMTKNOVSLTCLVKGFYPSDIAVEWESNGOPENNYKTTPPVLDSDGSFFLYS                   | 190 |
| 2 -   | *****                                                                          |     |
|       |                                                                                |     |
| hIqG1 | KLTVDKSRWOOGNVFSCSVMHEALHNHYTOKSLSLSPGK 232                                    |     |
| hIqG3 | KLTVDKSRWOOGNIFSCSVMHEALHNRYTOKSLSLSPGK 279                                    |     |
| hIqG2 | KLTVDKSRWOOGNVFSCSVMHEALHNHYTOKSLSLSPGK 228                                    |     |
| hIqG4 | RLTVDKSRWOEGNVFSCSVMHEALHNHYTOKSLSLSLGK 229                                    |     |
| 2     | •*************************************                                         |     |
|       |                                                                                |     |

## **B.**

| mIgG1  | VPRDCGCKPCICTVPEVSSVFIFPPKPKDVLTITLTPKVTCVVVDISK                                                                 | 48  |
|--------|------------------------------------------------------------------------------------------------------------------|-----|
| mIgG3  | EPRIPKPSTPPGSSCPPGNILGGPSVFIFPPKPKDALMISLTPKVTCVVVDVSE                                                           | 54  |
| mIgG2a | EPRGPTIKPCPPCKCPAPNLLGGPSVFIFPPKIKDVLMISLSPIVTCVVVDVSE                                                           | 54  |
| mIgG2b | EPSGPISTINPCPPCKECHKCPAPNLEGGPSVFIFPPNIKDVLMISLTPKVTCVVVDVSE                                                     | 60  |
|        | * • • • • • • • • • • • • • • • • • • •                                                                          |     |
| mIgG1  | DDPEVQFSWFVDDVEVHTAQTQPREEQFNSTFRSVSELPIMHQDWLNGKEFKCRVNSA <b>AF</b>                                             | 108 |
| mIgG3  | DDP DVHVSWFVDNKEVHTAWTQPREAQYNSTFRVVSALPIQHQDWMRGKEFKCKVNNKAL                                                    | 114 |
| mIgG2a | DDP DVQISWFVNNVEVHTAQTQTHREDYNSTLRVVSALPIQHQDWMSGKEFKCKVNNKDL                                                    | 114 |
| mIgG2b | DDP DVQISWFVNNVEVHTAQTQTHREDYNSTIRVVSTLPIQHQDWMSGKEFKCKVNNKDL                                                    | 120 |
|        | ***:*:.****:: ***** ** ::***:* ** *** *                                                                          |     |
| mIgG1  | <b>PAPI</b> EKTISKTKGRPKAPQVYTIPPPKEQMAKDKVSLTCMITDFFPEDITVEWQWNGQPA                                             | 168 |
| mIgG3  | <b>PAPI</b> ERTISKPKGRAQTPQVYTIPPPREQMSKKKVSLTCLVTNFFSEAISVEWERNGELE                                             | 174 |
| mIgG2a | <b>PAPI</b> ERTISKPKGSVRAPQVYVLPPPEEEMTKKQVTLTCMVTDFMPEDIYVEWTNNGKTE                                             | 174 |
| mIgG2b | <b>PSPI</b> ERTISKIKGLVRAPQVYILPPPAEQLSRKDVSLTCLVVGFNPGDISVEWTSNGHTE                                             | 180 |
|        | *:***:*** ** ::**** :*** *::::.*:***:* . * *** **                                                                |     |
| mIgG1  | ENYKNTQPIMDTDGSYFVYSKLNVQKSNWEAGNTFTCSVLHEGLHN <b>H</b> HTEKSLSHSPGK 2                                           | 227 |
| mIgG3  | QDYKNTPPILDSDGTYFLYSKLTVDTDSWLQGEIFTCSVVHEALHN <b>H</b> HTQKNLSRSPGK 2                                           | 233 |
| mIgG2a | LNYKNTEPVLDSDGSYFMYSKLRVEKKNWVERNSYSCSVVHEGLHN <b>H</b> HTTKSFSRTPGK 2                                           | 233 |
| mIgG2b | ENYKDTAPVLDSDGSYFIYSKLNMKTSKWEKTDSFSCNVRHEGLKNYYLKKTISRSPGK 2<br>:**:* *::*:**:**:**:* :* : ::*.* **.*:*: *.:*** | 239 |

**SUPPLEMENTAL FIGURE 2.** CLUSTAL multiple amino acid alignment of mouse and human IgG Fc  $C_H2$ - $C_H3$ . Amino acid sequences corresponding to the hinge region are highlighted in bold and red while sequence areas involved in binding to classical Fc $\gamma$  receptors are shown in bold

black. The three key amino acid residues involved in binding to FcRn, I253, H310 and H435 are highlighted in bold green.



**SUPPLEMENTAL FIGURE 3.** ELISA measurements of FcyR binding to scFv-Fc variants. Binding of (A) hFcyRIIa, (B) mFcyRIIIb, (C) hFcyRIIIa, (D) mFcyRIII and mFcyRIV to titrated amounts of T84.66 and the scFv-Fc variants (WT, I253A, H310A and H435Q). The numbers given represent the mean of triplicates.



**SUPPLEMENTAL FIGURE 4**. (B) Liver accumulation in LS174T xenografted athymic nude mice of <sup>111</sup>In-DOTA labeled anti-CEA scFv-Fc H310A/H435Q and I253A post injection. Liver uptake is expressed as percent injected dose per gram (% ID/g). The Figures were constructed using the biodistribution data previously reported (36).