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ABSTRACT 

Objectives: Single genetic loci offer little predictive power for the identification of depression.  This study 

examined whether an analysis of gene-gene interactions of 84 single nucleotide polymorphisms in genes 

associated with depression and age-related diseases would identify significant interactions with increased 

predictive power for depression. 

Design: A retrospective cohort study. 

Setting: A survey of participants in the Wisconsin Longitudinal Study. 

Participants: A total of 4,792 persons (2,459 females and 2,333 males) who provided saliva for 

genotyping; the group comes from a randomly selected sample of Wisconsin high school graduates from 

the class of 1957 as well as a randomly selected sibling, almost all of whom are non-Hispanic white.  

Primary outcome measure: Depression as determine by the Composite International Diagnostic 

Interview short-form (CIDI-SF).  

Results: Using a classification tree approach (recursive partitioning (RP)) we identified a number of 

candidate gene-gene interactions associated with depression. The primary SNP splits revealed by RP 

(ANKK1 rs1800497 in men and DRD2 rs224592 in women) were found to be significant as single factors 

by logistic regression (LR) after controlling for multiple testing (P=0.001 for both). Without considering 

interaction effects, only 1 of the 5 subsequent RP splits reached nominal significance in logistic regression 

(FTO rs1421085 in women; P-value=0.008). However, after controlling for gene-gene interactions by 

running logistic regression on RP-specific subsets, every split became significant and grew larger in 

magnitude (OR  [before]�[after]: Men: GNRH1 novel SNP: [1.43 � 1.57]; Women: APOC3 rs2854116: 

[1.28 � 1.56], ACVR2B rs3749386: [1.11 � 2.16], FTO rs1421085: [1.32 � 1.63], IL6 rs1800795: [1.12 

� 1.85]). 

Conclusions: Our results suggest that examining gene-gene interactions improves the identification of 

genetic associations predictive of depression. Four of the SNPs identified in these interactions were 

located in two pathways well-known to impact depression: neurotransmitter (ANKK1 and DRD2) and 
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neuroendocrine (GNRH1 and ACVR2B) signaling. This study demonstrates the utility of RP analysis as an 

efficient and powerful exploratory analysis technique for uncovering genetic and molecular pathway 

interactions associated with disease etiology.  

 

INTRODUCTION 

Depression is a widespread mental disorder associated with a host of undesirable health, social, and 

economic outcomes. One in six Americans is diagnosed with depression in his or her lifetime (1). While 

many environmental factors—such as socioeconomic status, childhood abuse, and major life events—

have important ties with depression, so too does gender and many genetic and epigenetic factors, making 

the disorder heterogeneous in nature (2). Another major risk factor for depression is age, with depression 

reaching its highest levels in adults over 80 years of age (3). 

It has been demonstrated from twin studies that genetic factors typically account for 40–70% of the risk 

for developing major depressive disorder (MDD), and adoption studies have confirmed the role of genetic 

risk factors in the development of MDD (see (4) and references therein).  Genetic studies, including recent 

genome-wide association studies (GWAS), have identified genetic alterations in over 50 genes known to 

be associated with depression (5).  However, individually, the genetic alterations found within these genes 

(primarily single nucleotide polymorphisms (SNPs)) have little predictive value.  There is a similar lack of 

predictive value from GWAS of other major age-related diseases (6).   

Given this lack of predictive power among individual genetic alterations for depression together with 

the complex nature of aging-related diseases, it would seem prudent to examine epistatic effects on this 

age-related condition. In this respect, we have previously demonstrated that G x G interactions greatly 

modulate risk for complex age-related diseases (7, 8). Recent studies of depression also have identified 

epistatic effects.  In particular, associations have been identified between BDNF Val66Met (brain-derived 

neurotrophic factor; rs6265) and 5-HTTLPR (serotonin transporter linked promoter region (9); GSK3B 

rs6782799 (glycogen synthase kinase 3β), BDNF rs7124442 and BDNF Val66Met (10); BDNF Val66Met 
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and SNPs in NTRK2  (neurotrophic tyrosine kinase receptor 2; (11)), and 5-HTTLPR short allele and a 

chromosome 4 gene (12). 

In this study, we have assessed the epistatic effects of known genetic alterations that link to 

depression and age-related diseases in the Wisconsin Longitudinal Study (WLS).  Using recursive 

partitioning (RP) and logistic regression (LR) we identified associations between dopaminergic genes and 

depression in men and women, as well as G x G interactions involving neuroendocrine signaling 

pathways, with increased significance compared with single genetic associations.  
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METHODS 

Study Participants and Surveys 

Data were collected from the WLS, a random sample originally comprised of 10 317 men and women 

who graduated from Wisconsin high schools in 1957. Later in 1977, the WLS began interviewing one 

randomly selected sibling of each graduate, when possible. The cohort consists almost entirely of non-

Hispanic white persons whose average level of educational attainment was 1.5 years of post-high school 

education at the time of interview in 2004. Ages of participants in the WLS ranged from 35 to 90 years old 

at this time, with 83% of participants being between 60 and 70 years old. Further characteristics of the 

WLS cohort may be found in detail elsewhere (13). Health and psychological well-being phenotypic data 

was taken from mail and phone surveys given in 2004-2005. Our main measure of depression is based on 

a variation of the Composite International Diagnostic Interview short-form (CIDI-SF). All participants 

answered a single stem question: “Have you ever had a time in life lasting two weeks or more when nearly 

every day you felt sad, blue, depressed, or when you lost interest in most things like work, hobbies, or 

things you usually liked to do for fun?” Only those who answered YES and whose depression was not 

always caused by alcohol, drugs, medications, or physical illness were asked further depression symptom 

questions. Symptom questions asked whether the two week period was accompanied with any weight 

loss, trouble sleeping, feeling tired, feeling bad upon waking, losing interest, trouble concentrating, or 

thoughts about death. Those answering YES to 3 or more of these symptom questions were classified as 

having depression (14). 

 

Genotyping 

7 101 participants (4 569 graduates & 2 532 siblings) provided saliva samples in Oragene DNA sample 

collection kits from which DNA was extracted and genotyped for 84 SNPs that were selected based on 

their association with depression and age-related conditions and diseases.  Genotyping was performed by 

KBioscience (Hoddesdon, UK) with use of a homogeneous Fluorescent Resonance Energy Transfer 
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technology coupled to competitive allele specific PCR.  All SNP genotypes described in our results were in 

Hardy-Weinberg equilibrium and their frequencies matched those reported in the literature for European 

samples.   

 

Statistical Analysis 

Of those participants that provided DNA and that also completed the survey depression questions (4 

792), the following analyses were performed: 

 

Recursive Partitioning (RP).    RP is a data mining tool for revealing trends that relate a dependent 

variable (depression incidence) to various predictor variables (SNPs). Zhang and Bonney have shown 

how RP can be used in genetic association studies to identify disease genes (15). RP helps control for 

heterogeneity in the population and confounding factors by allowing for the segregation of the sample 

population according to any condition. Thus, RP is a useful way to handle complex datasets that might 

confound regression analysis due to the complexity of the relationship between the independent and 

dependent variables and due to missing information. 

RP classification trees (using R package rpart) were used to identify potential interactions among the 

84 SNPs in relation to depression. The trees split the data along branches according to criteria determined 

by the rpart package algorithm, which is originally based off the work of Breiman’s classification and 

regression trees (CART) algorithm (16). Basically, the CART algorithm first considers all depressed and 

non-depressed subjects pooled together in a heterogeneous root node. Based on considering every 

possible “yes-no” binary partition that can be made by each independent variable, the single split which 

maximizes homogeneity between the two resulting sub-nodes as compared to the root node is made. 

Each sub-node can then be treated independently as a new root node for all subsequent splits, and the 

pattern continues until every subject constitutes a terminal node, resulting in a very large and complex 

tree. A 10-part cross validation procedure seeking to minimize misclassification and complexity 
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determines optimal pruning. See Therneau and Atkinson (17) for specific details of the rpart package. 

Tree nodes were re-created in Microsoft Visio to display depression incidence (in %) and total number of 

participants rather than the default number of controls/cases as presented by rpart. 

 

Logistic Regression (LR).    Variables found in association with depression based on RP analysis were 

considered in single factor LR models, separate by gender, using the specific dichotomous splitting of 

genotypes as designated by RP trees. Regression models for all seven SNP splits were first run on the full 

dataset to represent single main factor effects. Then each split was run on the respective subset of data 

as represented by the preceding RP split criteria. Thus, we attempt to mirror RP splits within a more 

formal LR framework in order to measure the significance of interactions presented by the trees. Multiple 

testing of 84 SNPs in RP for both male and females followed by 14 LR models resulted in a modified FDR 

significance level of 0.008. 
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RESULTS 

Of the 4,792 participants with complete survey information on CIDI-SF depression (2 459 females and 

2 333 males), we identified 711 participants (481 females and 230 males) with depression.  Given that the 

independent variable gender (when included as a factor in the full dataset) was the primary split on RP 

trees; that women are over two times as likely to be diagnosed with depression than men; and since the 

female etiology of depression has been reported to be associated with unique social, psychological, and 

biological factors (18), all subsequent analyses were performed by gender.  

 

Recursive Partition Analysis 

To examine multi-gene interactions for association with depression we screened our dataset using RP. 

The two-factor RP tree (ANKK1/GNRH1) was the optimized pruning for men (Fig. 1), while the five-factor 

tree (DRD2/APOC3/ACVR2B/FTO/IL6) was the optimized pruning for women (Fig. 2). The best overall 

split for men was ANKK1 rs1800497, where the incidence of depression increased 2.3-fold in those with 

no C-alleles compared to those with one or two C-alleles. Considering interaction between ANKK1 and 

GNRH1 widened the disparity in incidence, where those with at least one C-allele in both ANKK1 

rs1800497 and the novel SNP in GNRH1 had a 3-fold lower incidence than those without a C-allele in 

ANKK1 rs1800497.   

For women, the best overall split was DRD2 rs2242592, where those with one or two C-alleles had 

1.3-fold higher incidence of depression compared to those without any C-alleles. G x G interactions 

associated with the highest incidence of depression included: DRD2 rs2242592 T/T + APOC3 rs45537037 

T/T + ACVR2B rs3749386 C/C or T/T, accounting for a 1.4-fold increase in depression compared to 

baseline incidence.  

 

Single Main-Factor Effects 

Specific SNP interactions identified by RP were next analyzed by LR (see Table 1, Full Data). The 

Page 8 of 31

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For peer review
 only

 

 

9 

primary SNP splits in males and females were significant at the modified FDR level. Men with no C-alleles 

for ANKK1 rs1800497 had 2.6 times higher odds [P=0.001 (1.5, 4.6)] of depression compared with men 

with at least 1 C-allele. Women with at least 1 C-allele for DRD2 rs2242592 had 1.3 times higher odds 

[P=0.006 (1.1-1.6)] of depression compared with women with no C-alleles. One other split reached 

nominal significance; women homozygous (C/C or T/T) for FTO rs1421085 had 1.32 times higher odds 

[P=0.008 (1.1-1.6)] for depression than women with a heterozygous genotype. SNP splits of GNRH1, 

APOC3, ACVR2B, and IL6 did not significantly associate with depression.  

 

Gene-Gene Interactions Enhance Predictability for Depression 

Specific SNP interactions identified by RP were next analyzed by LR as RP-specific subsets (see 

Table 1, RP-Subsetted Data). All 5 of the secondary and tertiary RP splits were found to be significant at 

the modified FDR level when considered as subsets. Among only men with at least one C-allele in ANKK1 

rs1800497, those with no C-allele in the novel SNP of GNRH1 had 1.57 times higher odds [P=0.002 (1.2-

2.1)] for depression than men with 1 or 2 C-alleles. For the subset of women in the first right-hand split of 

Fig. 2, those homozygous for FTO rs1421085 had 1.63 times higher odds [P=0.0006 (1.2-2.2)] for 

depression than women with a heterozygous genotype. For the remaining subset of women in the second 

right-hand split of Fig. 2, those homozygous for IL6 rs1800795 had 1.85 times higher odds [P=0.007 (1.2-

2.9)] for depression than women with a heterozygous genotype. For the subset of women in the first left-

hand split of Fig. 2, those with no C-alleles for APOC3 rs45537037 had 1.56 times higher odds [P=0.004 

(1.2-2.1)] for depression than women with 1 or 2 C-alleles. For the subset of women in the second left-

hand split of Fig. 2, those homozygous for ACVR2B rs3749386 had 2.16 times higher odds [P=0.001 (1.4-

3.4)] for depression than women with a heterozygous genotype.  
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DISCUSSION 

Utilizing RP as a screening tool to find potential multi-gene interactions, followed by verification of 

multi-gene interactions with LR, our data demonstrate that multi-gene interactions predict depression with 

a greater certainty than single main factor associations.  RP provided us with primary dichotomous 

genotype splits in men and women (ANKK1 rs1800497 and DRD2 rs2242592, respectively) that were 

both significant in LR models at the modified FDR level (Table 1). Considering the 5 subsequent RP splits 

in LR over the entire dataset, only 1 reached a nominal level of significance (barely), which was FTO 

rs1421085 in women. However, after running LR on specific subsets of data according to the pattern of 

RP branches, every split was found to be significant and every odds ratios grew larger (Table 1; P-values 

[before]�[after]: Male Left: 1.43 � 1.57, Female Left 1: 1.28 � 1.56, Female Left 2: 1.11 � 2.16, Female 

Right 1: 1.32 � 1.63, Female Right 2: 1.12 � 1.85).  Thus, RP provides two unique and important criteria: 

dichotomous genotype splitting instructions and gene-gene interaction patterns. These criteria go beyond 

the traditional single factor SNP approach to genetic association studies and allow identification of 

important multi-gene pathways that more suitably characterize the etiology of complex diseases.  

 

The Utility of Recursive Partitioning, Multi-factor Dimensionality Reduction and Logistic Regression for 

Identification of Gene-Gene Interactions 

With recent advances in genotyping allowing for high-dimensional SNP identification, it is now possible 

to examine genetic datasets not only for single main factor effects, but also G x G interactions.  The 

requirement for G x G analyses as a better predictor of age-related diseases is obvious from the 

standpoint that humans are complex biological systems composed of numerous molecular interactions, 

and from recent studies indicating disease risk is modulated by G x G interactions (7).  Notwithstanding 

this, the development of analytical tools for the identification of G x G interactions has not kept pace with 

the technological advances in identifying genetic alterations among individuals.  In this respect, we have 

previously used MDR, LR and LD to identify G x G interactions among a small set of SNPs (7).  However, 
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large datasets require a screening tool to identify potential multi-gene interactions.  In this study, we have 

used RP to screen for multi-gene interactions, a data-mining technique that is currently under-utilized in 

genetic studies.  RP serves as an efficient and powerful exploratory analysis technique, especially when 

looking for interactions in data sets with a large number of independent variables.  This screening allows 

for the identification of G x G interactions (with greater explanatory power), that might otherwise not have 

been identified, and that can then be confirmed using more traditional statistical techniques. As illustrated 

in this paper, this data-mining methodology has the advantage of identification of genetic interactions 

between pathways involved in the etiology of depression, in keeping with the etiological heterogeneity of 

this disorder (see later).    

Our study provides proof of principle for the use of RP in higher-dimensional analyses such as GWAS, 

where a comprehensive list of SNPs may fully explore genetic predisposition to depression and other age-

related disease. The WLS is an ideal candidate for future GWAS studies given its large sample size, rich 

covariate composition and longitudinal nature.  

In this genetic study we aimed to identify underlying genetic predispositions to depression and thus 

have not yet tested environmental/phenotypic data.  Future analyses using RP to examine the impact of 

phenotypic and environmental factors on the development of depression would be anticipated to identify 

gene-phenotype/environment and multi-phenotype/environment interactions.  Indeed, the predictive gains 

of G x G analyses were stronger for men than women, despite the fact that depression occurs 

disproportionately in women (~2:1 female-to-male; (19-23)). This suggests that environmental factors may 

be needed in addition to genetic factors in understanding the etiological pathways for women. Indeed, 

biological factors such as hormonal changes related to reproductive status (24, 25) may impact 

environmental factors such as psychosocial experiences (trauma, stress, interpersonal relationships, etc) 

and general health issues in the development of depression.   

 

Genetic and Biological Correlates of Depression 
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Numerous studies have identified SNPs that associate with depression.  Many of the SNPs associated 

with depression from other studies were not significantly associated in our study.  This is perhaps not 

surprising, since a single factor is unlikely to provide consistent association especially in a complex 

condition such as depression, where multiple pathways intersect in regulating the risk of the disease.  For 

example, if a SNP within the serotonin pathway also requires a SNP in the glutamatergic pathway in order 

for the patient to present with depression, the presence of either SNP in the absence of the other will not 

be predictive of depression. Moreover, as indicated by Shi and Weinberg, since the human genome 

contains genetic redundancy, disruption of a single gene may be selectively neutral, but the malfunction of 

several genes in a pathway might result in expression of a particular phenotype (26). 

Both the primary splits in men and women were SNPs linked with DRD2 (dopamine receptor D2), a 

gene that has previously been linked with depression and social phobia (27-29). The primary male 

genotype split rs1800497, technically found in gene ANKK1, is historically known as the DRD2 Taq1A 

allele because of its known association with decreased dopamine receptor D2 density (in those with T 

alleles) (30-33). The Taq1A allele has also been previously associated with depressive symptoms in 

children, where those with the A1 allele (T) were more likely to have depressive symptoms (34). We saw a 

similar association between A1 and depression in WLS men, where those with two A1 alleles had 2.6 

times higher odds for depression compared to those with one or no A1 alleles. The primary split in women 

(DRD2 rs2242592) has previously been found to be associated with schizophrenia, where the C-allele 

was associated with higher susceptibility for schizophrenia (35).  Interestingly, this same study also found 

the Taq1A allele to also associate with schizophrenia.  

The secondary and tertiary right-hand splits in the female RP tree—FTO (fat mass and obesity 

associated) rs1421085 and IL6 (interleukin 6) rs1800795—have also been found to relate with mental 

illness and depression in previous studies (36)(37).  There is evidence that activin receptor signaling also 

is involved in affective disorders, especially when considering interaction with GABAergic pathways (38). 

Although we did not see an interaction between SNPs in GABA/activin receptor genes and depression, 
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ACVR2B was associated with depression in women.  No previous associations between depression and 

APOC3, ACVR2B, or GNRH1 have been reported. 

That these genetic variants are associated with neuroendocrine pathways (GnRH1, ACVR2B) that are 

known to regulate neurotransmitter release and cognitive behavior (39-40) supports these associations as 

relevant to the etiology of depression and underlines the benefits of using RP to identify meaningful G x G 

interactions associated with disease.   

 

Limitations 

Given the numerous genetic, phenotypic and environmental influences that are linked to depression, 

and the small number of SNPs analyzed, it is not surprising that predictability from our models was low 

(although our predictability was superior to previous studies examining only single main factors).  Also, the 

predictive value of our statistical models was further limited due to user bias in selection of SNPs (from 

nearly two-million SNPs in the human genome) used in this study. As a result of this, interactions we have 

found could potentially be moderated by another gene that we have not considered in this study. 

Nonetheless, we identified significant G x G interactions between known, and newly identified, loci 

associated with depression. Importantly, 4 of the 7 SNPs identified in these interactions were primarily 

located in two pathways well-known to impact depression: neurotransmitter and neuroendocrine signaling.  

The results from the RP analyses conducted in this study were confirmed by LR, demonstrating the 

utility of RP as a screening tool for identifying meaningful G x G interactions. Future development of 

algorithms for RP analysis should not only maximize the distance between branches of the next best split 

(i.e. rpart), but consider subsequent future split combinations that could potentially result in trees with 

“better” overall predictability.   

 

Summary 

Our data indicate that G x G interaction analyses allows for enhanced predictability of conditions and 
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diseases of aging.  RP is an efficient and powerful exploratory analysis technique for elucidating G x G 

interactions in large datasets and combined with LR provides an important statistical analysis for the 

identification of well supported G x G interactions.  We predict that such analytical methods will play an 

increasingly important role in the identification of epistatic effects in future large GWAS.  Finally, our 

studies illustrate how RP analyses can be used to find interacting pathways involved in the etiology of a 

disease or condition such as depression. 
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FIGURE LEGENDS 

 

Figure 1. Recursive Partitioning Tree of CIDI-SF Depression in Males of the WLS. Upper and lower 

numbers in nodes represent the proportion of participants with depression and the number of 

participants in that node, respectively. Blue and purple boxes/circles indicate lower and higher rates of 

depression relative to the primary node, respectively. Split information indicates gene, SNP, and 

genotype criteria, respectively. M1 is subset of data referenced in Table 1. Sensitivity: 0.526, Specificity: 

0.598, Accuracy: 0.591. 

 

Figure 2. Recursive Partitioning Tree of CIDI-SF Depression in Females of the WLS. Upper and lower 

numbers in nodes represent the proportion of participants with depression and the number of 

participants in that node, respectively. Blue and purple boxes/circles indicate lower and higher rates of 

depression relative to the primary node, respectively. Split information indicates gene, SNP, and 

genotype criteria, respectively. F1-F4 are subsets referenced in Table 1. Sensitivity: 0.615, Specificity: 

0.549, Accuracy: 0.562. 
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Table 1. 
Single-factor logistic regression models based directly off male and female RP tree split criteria (see Figures 1 & 2). Each SNP split 
was first run on the full dataset to represent single main factor effects (“Full Data”) for both males and females. Then the same SNP 
splits were run on specific subsets of data per RP tree splits (M1, F1-F4; “RP-Subsetted Data”). 

Gender RP Split Gene SNP Genotypes 

Full Data RP-Subsetted Data 

OR (95% CI) P-value Subset OR (95% CI) P-value 

Male Primary ANKK1 rs1800497 T/T vs. C/C + C/T 2.60 (1.47-4.61) 0.001 * -- ---- ---- 

 Left GNRH1 novel SNP T/T vs. C/C + T/C 1.43 (1.08-1.88) 0.011 M1 1.57 (1.18-2.09) 0.002 * 

Female Primary DRD2 rs2242592 C/C + T/C vs. T/T 1.33 (1.09-1.62) 0.001 * -- ---- ---- 

 Left 1 APOC3 rs2854116 T/T vs. C/C + T/C 1.28 (1.05-1.57) 0.017 F1 1.56 (1.16-2.10) 0.004 * 

 Left 2 ACVR2B rs3749386 C/C + T/T vs. T/C 1.11 (0.91-1.36) 0.302 F2 2.16 (1.36-3.42) 0.001 * 

 Right 1 FTO rs1421085 C/C + T/T vs. T/C 1.32 (1.07-1.61) 0.008 * F3 1.63 (1.23-2.17) 0.0006 * 

 Right 2 IL6 rs1800795 C/C + G/G vs. C/G 1.12 (0.91-1.36) 0.283 F4 1.85 (1.18-2.88) 0.007 * 

RP, recursive partitioning; OR, odds ratio; CI, confidence interval 
M1: LR analysis was run for only those with genotype DRD2 rs1800497 C/C or C/T 
F1: LR analysis was run for only those with genotype DRD2 rs2242592 T/T 
F2: LR analysis was run for only those with genotypes DRD2 rs2242592 T/T and APOC3 rs2854116 T/T 
F3: LR analysis was run for only those with genotype DRD2 rs2242592 C/C or T/C 
F4: LR analysis was run for only those with genotypes DRD2 rs2242592 C/C or T/C and FTO rs1421085 T/C 
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Supplementary Table 1. Depression-Associated SNP Identified in the WLS 
Gene SNP Name Alleles Chr#/Location Residue Associated disease/behavior 

ACVR2B rs3749386 activin receptor IIB T/C 3/intron 1 -- left-right axis malformations
*, (1) 

APOC3 rs2854116 apolipoprotein C-III T/C 11/promoter (-455) -- nonalcoholic fatty liver disease, insulin 

resistance
2
 

DRD2/ANKK1 rs1800497 dopamine receptor D2/ankyrin repeat and 

kinase domain containing 1 

C/T 11/exon (ANKK1) Glu713Lys obesity, drug addiction
3
 

DRD2 rs2242592 dopamine receptor D2 T/C 11/3’ -- Schizophrenia
4
 

FTO rs1421085 fat mass and obesity associated T/C 16/intron 1 -- Obesity
5-7

; mental disorders (in men)
8
  

GNRH1 novel SNP gonadotropin-releasing hormone promoter T/C 8/promoter -- Alzheimer’s disease
9
 

IL6 rs1800795 interleukin 6 (interferon, beta 2) C/G 7/promoter (-174) -- Arthritis
10

, breast cancer
11

; type II 

diabetes
12

; depression
13

 
*
Gene association only
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ABSTRACT 

Objectives: Single genetic loci offer little predictive power for the identification of depression.  This study 

examined whether an analysis of gene-gene interactions of 78 single nucleotide polymorphisms in genes 

associated with depression and age-related diseases would identify significant interactions with increased 

predictive power for depression. 

Design: A retrospective cohort study. 

Setting: A survey of participants in the Wisconsin Longitudinal Study. 

Participants: A total of 4,811 persons (2,464 females and 2,347 males) who provided saliva for 

genotyping; the group comes from a randomly selected sample of Wisconsin high school graduates from 

the class of 1957 as well as a randomly selected sibling, almost all of whom are non-Hispanic white.  

Primary outcome measure: Depression as determine by the Composite International Diagnostic 

Interview short-form (CIDI-SF).  

Results: Using a classification tree approach (recursive partitioning (RP)) we identified a number of 

candidate gene-gene interactions associated with depression. The primary SNP splits revealed by RP 

(ANKK1 rs1800497 (also known as DRD2 Taq1A) in men and DRD2 rs224592 in women) were found to 

be significant as single factors by logistic regression (LR) after controlling for multiple testing (P=0.001 for 

both). Without considering interaction effects, only 1 of the 5 subsequent RP splits reached nominal 

significance in logistic regression (FTO rs1421085 in women; P-value=0.008). However, after controlling 

for gene-gene interactions by running logistic regression on RP-specific subsets, every split became 

significant and grew larger in magnitude (OR [before]�[after]: Men: GNRH1 novel SNP: [1.43 � 1.57]; 

Women: APOC3 rs2854116: [1.28 � 1.55], ACVR2B rs3749386: [1.11 � 2.17], FTO rs1421085: [1.32 � 

1.65], IL6 rs1800795: [1.12 � 1.85]). 

Conclusions: Our results suggest that examining gene-gene interactions improves the identification of 

genetic associations predictive of depression. Four of the SNPs identified in these interactions were 

located in two pathways well-known to impact depression: neurotransmitter (ANKK1 and DRD2) and 
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neuroendocrine (GNRH1 and ACVR2B) signaling. This study demonstrates the utility of RP analysis as an 

efficient and powerful exploratory analysis technique for uncovering genetic and molecular pathway 

interactions associated with disease etiology.  
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INTRODUCTION 

Depression is a widespread mental disorder associated with a host of undesirable health, social, and 

economic outcomes. One in six Americans is diagnosed with depression in his or her lifetime (1). While 

many environmental factors—such as socioeconomic status, childhood abuse, and major life events—

have important ties with depression, so too does gender and many genetic and epigenetic factors, making 

the disorder heterogeneous in nature (2). Another major risk factor for depression is age, with depression 

reaching its highest levels in adults over 80 years of age (3). 

It has been demonstrated from twin studies that genetic factors typically account for 40–70% of the risk 

for developing major depressive disorder (MDD), and adoption studies have confirmed the role of genetic 

risk factors in the development of MDD (see (4) and references therein).  Genetic studies, including recent 

genome-wide association studies (GWAS), have identified genetic alterations in over 50 genes known to 

be associated with depression (5).  However, individually, the genetic alterations found within these genes 

(primarily single nucleotide polymorphisms (SNPs)) have little predictive value.  There is a similar lack of 

predictive value from GWAS of other major age-related diseases (6).   

Given this lack of predictive power among individual genetic alterations for depression together with 

the complex nature of aging-related diseases, it would seem prudent to examine epistatic effects on this 

age-related condition. In this respect, we have previously demonstrated that G x G interactions greatly 

modulate risk for complex age-related diseases (7, 8). Recent studies of depression also have identified 

epistatic effects.  In particular, associations have been identified between BDNF Val66Met (brain-derived 

neurotrophic factor; rs6265) and 5-HTTLPR (serotonin transporter linked promoter region (9); GSK3B 

rs6782799 (glycogen synthase kinase 3β), BDNF rs7124442 and BDNF Val66Met (10); BDNF Val66Met 

and SNPs in NTRK2  (neurotrophic tyrosine kinase receptor 2; (11)), and 5-HTTLPR short allele and a 

chromosome 4 gene (12).   

The goals of this study were therefore to 1) explore G x G interactions that might better predict the 

genetic factors involved in the etiology of depression, and 2) to determine the utility of machine learning 
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algorithms (recursive partitioning) to identify genetic interactions.  Using  genotypic data from the  

In this study, we have assessed the epistatic effects of known genetic alterations that link to 

depression and age-related diseases in the Wisconsin Longitudinal Study (WLS).  Using recursive 

partitioning (RP) and logistic regression (LR) we identified associations between dopaminergic genes and 

depression in men and women, as well as G x G interactions involving neuroendocrine signaling 

pathways, with increased significance compared with single genetic associations.  
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METHODS 

Study Participants and Surveys 

Data were collected from the WLS, a random sample originally comprised of 10, 317 men and women 

who graduated from Wisconsin high schools in 1957. Later in 1977, the WLS began interviewing one 

randomly selected sibling of each graduate, when possible. The cohort consists reflects the ancestral 

makeup of the late-1950s Wisconsin population in that participants are almost entirely of non-Hispanic 

white personsmales and females. whose average level of educational attainment was 1.5 years of post-

high school education at the time of interview in 2004. Ages of participants in the WLS ranged from 35 to 

90 years old at this time, with 83% of participants being between 60 and 70 years old. In general, the 

sample is broadly representative of older white Americans with at least a high school education (13). 

Further characteristics of the WLS cohort may be found in detail elsewhere (14). Health and psychological 

well-being phenotypic data was taken from mail and phone surveys given in 2004-2005. Our main 

measure of depression is based on a variation of the Composite International Diagnostic Interview short-

form (CIDI-SF). All participants answered a single stem question: “Have you ever had a time in life lasting 

two weeks or more when nearly every day you felt sad, blue, depressed, or when you lost interest in most 

things like work, hobbies, or things you usually liked to do for fun?” Only those who answered YES and 

whose depression was not always caused by alcohol, drugs, medications, or physical illness were asked 

further depression symptom questions. Symptom questions asked whether the two week period was 

accompanied with a) any weight loss, b) trouble sleeping, c) feeling tired, d) feeling bad upon waking, e) 

losing interest, f) trouble concentrating, or g) thoughts about death. Those answering YES to 3 or more of 

these symptom questions were classified as having depression (15). Those answering YES to 2 or fewer 

symptom questions and all those answering NO to the initial stem question were classified as controls.  

 

Genotyping 

7,101 participants (4,569 graduates & 2,532 siblings) provided saliva samples in Oragene DNA sample 
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collection kits from which DNA was extracted and genotyped for 78 SNPs that were selected based on 

their association with depression and age-related conditions and diseases (see Supplementary 

Information 1).  Genotyping was performed by KBioscience (Hoddesdon, UK) with use of a homogeneous 

Fluorescent Resonance Energy Transfer technology coupled to competitive allele specific PCR.  All SNP 

genotypes described in our results were in Hardy-Weinberg equilibrium and their frequencies matched 

those reported in the literature for European samples.   

 

Statistical Analysis 

Analyses were limited to the 4,811 pooled graduates and siblings for whom we have depression and 

genotype information (Note: individuals with more than 10% missing genotype data were not included). 

The average age among this sample was just under 65 years in 2004. 80% were married, and the 

average amount of post-high school educational attainment was 2 years. Median household income in 

1993 was $56,700.  

 

Recursive Partitioning (RP).    RP is a data mining tool for revealing trends that relate a dependent 

variable (depression incidencedepressed vs. non-depressed) to various predictor variables (SNPs). Zhang 

and Bonney have shown how RP can be used in genetic association studies to identify disease genes 

(16). RP helps control for heterogeneity in the population and confounding factors by allowing for the 

segregation of the sample population according to any condition. Thus, RP is a useful way to handle 

complex datasets that might confound regression analysis due to the complexity of the relationship 

between the independent and dependent variables and due to missing information. 

RP classification trees (using R package rpart) were used to identify potential interactions among the 

78 SNPs in relation to depression. The trees split the data along branches according to criteria determined 

by the rpart package algorithm, which is originally based off the work of Breiman’s classification and 

regression trees (CART) algorithm (17). Basically, the CART algorithm first considers all depressed and 
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non-depressed subjects pooled together in a heterogeneous root node. Based on considering every 

possible “yes-no” binary partition that can be made by each independent variable, the single split which 

maximizes homogeneity between the two resulting sub-nodes as compared to the root node is made. 

Each sub-node can then be treated independently as a new root node for all subsequent splits, and the 

pattern continues until every subject constitutes a terminal node, resulting in a very large and complex 

tree. A 10-part cross validation procedure seeking to minimize misclassification and complexity 

determines optimal pruning. See Therneau and Atkinson (18) for specific details of the rpart package. 

Priors were set to 0.5, 0.5. The usesurrogate parameter was set to 0 so that subjects missing the primary 

split variable do not progress further down the tree, and maxsurrogate was set to 0 to cut computation 

time in half. The threshold complexity parameter (cp) was set to 0.01. Tree nodes were re-created in 

Microsoft Visio to display percentage depressed depression incidence (in %) and total number of 

participants rather thanand the default number of controls/cases as presented by rpart. 

 

Logistic Regression (LR).    Variables found in association with depression based on RP analysis were 

considered in single factor LR models, separate by gender, using the specific dichotomous splitting of 

genotypes as designated by RP trees. Regression models for all seven SNP splits were first run on the full 

dataset to represent single main factor effects. Then each split was run on the respective subset of data 

as represented by the preceding RP split criteria. Thus, we attempt to mirror RP splits within a more 

formal LR framework in order to measure the significance of interactions presented by the trees. Multiple 

testing of 78 SNPs in RP for both male and females followed by 14 LR models resulted in a modified FDR 

significance level of 0.009. 
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RESULTS 

Of the 4,811 participants with complete survey information on CIDI-SF depression (2,464 females and 

2, 347 males) under examination in this study, we identified 713 participants (481 females and 232 males) 

with depression (14.8 %).  Given that the independent variable gender (when included as a factor in the 

full dataset) was the primary split on RP trees; that women are over two times as likely to be diagnosed 

with depression than men; and since the female etiology of depression has been reported to be 

associated with unique social, psychological, and biological factors (19), all subsequent analyses were 

performed by gender.  

 

Recursive Partition Analysis 

To examine multi-gene interactions for association with depression we screened our dataset using RP. 

The two-factor RP tree (ANKK1/GNRH1) was the optimized pruning for men (Fig. 1), while the five-factor 

tree (DRD2/APOC3/ACVR2B/FTO/IL6) was the optimized pruning for women (Fig. 2). For more detailed 

information on the 7 SNPs found by RP, see Supplementary Information 2. The best overall split for men 

was ANKK1 rs1800497 (historically known as the DRD2 Taq1A allele), where the incidence of depression 

increased 2.2-fold in those with no C-alleles compared to those with one or two C-alleles. Considering 

interaction between ANKK1 and GNRH1 widened the disparity in incidence, where those with at least one 

C-allele in both ANKK1 rs1800497 and the novel SNP in GNRH1 had a 2.7-fold lower incidence than 

those without a C-allele in ANKK1 rs1800497.   

For women, the best overall split was DRD2 rs2242592, where those with one or two C-alleles had 

1.3-fold higher incidence of depression compared to those without any C-alleles. G x G interactions 

associated with the highest incidence of depression included: DRD2 rs2242592 T/T + APOC3 rs45537037 

T/T + ACVR2B rs3749386 C/C or T/T, accounting for a 1.4-fold increase in depression compared to 

baseline incidence.   
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Single Main-Factor Effects 

Specific SNP interactions identified by RP were next analyzed by LR (see Table 1, Full Data). The 

primary SNP splits in males and females were significant at the modified FDR level. Men with no C-alleles 

for ANKK1 rs1800497 had 2.55 times higher odds [P=0.001 (1.44, 4.51)] of depression compared with 

men with at least 1 C-allele. Women with at least 1 C-allele for DRD2 rs2242592 had 1.32 times higher 

odds [P=0.006 (1.08-1.62)] of depression compared with women with no C-alleles. One other split 

reached nominal significance; women homozygous (C/C or T/T) for FTO rs1421085 had 1.32 times higher 

odds [P=0.008 (1.08-1.62)] for depression than women with a heterozygous genotype. SNP splits of 

GNRH1, APOC3, ACVR2B, and IL6 did not significantly associate with depression.  

 

Gene-Gene Interactions Enhance Predictability for Depression 

Specific SNP interactions identified by RP were next analyzed by LR as RP-specific subsets (see 

Table 1, RP-Subsetted Data). All 5 of the secondary and tertiary RP splits were found to be significant at 

the modified FDR level when considered as subsets. Among only men with at least one C-allele in ANKK1 

rs1800497, those with no C-allele in the novel SNP of GNRH1 had 1.57 times higher odds [P=0.002 (1.18-

2.08)] for depression than men with 1 or 2 C-alleles. For the subset of women in the first right-hand split of 

Fig. 2, those homozygous for FTO rs1421085 had 1.65 times higher odds [P=0.0005 (1.24-2.18)] for 

depression than women with a heterozygous genotype. For the remaining subset of women in the second 

right-hand split of Fig. 2, those homozygous for IL6 rs1800795 had 1.85 times higher odds [P=0.006 

(1.19-2.89)] for depression than women with a heterozygous genotype. For the subset of women in the 

first left-hand split of Fig. 2, those with no C-alleles for APOC3 rs45537037 had 1.55 times higher odds 

[P=0.004 (1.15-2.09)] for depression than women with 1 or 2 C-alleles. For the subset of women in the 

second left-hand split of Fig. 2, those homozygous for ACVR2B rs3749386 had 2.17 times higher odds 

[P=0.001 (1.37-3.44)] for depression than women with a heterozygous genotype.  
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DISCUSSION 

Utilizing RP as a screening tool to find potential multi-gene interactions, followed by verification of 

multi-gene interactions with LR, our data demonstrate that multi-gene interactions predict depression with 

a greater certainty than single main factor associations.  RP provided us with primary dichotomous 

genotype splits in men and women (ANKK1 rs1800497 and DRD2 rs2242592, respectively) that were 

both significant in LR models at the modified FDR level (Table 1). Considering the 5 subsequent RP splits 

in LR over the entire dataset, only 1 reached a nominal level of significance (barely), which was FTO 

rs1421085 in women. However, after running LR on specific subsets of data according to the pattern of 

RP branches, every split was found to be significant and every odds ratios grew larger (Table 1; OR 

[before]�[after]: Male Left: 1.43 � 1.57, Female Left 1: 1.28 � 1.55, Female Left 2: 1.11 � 2.17, Female 

Right 1: 1.32 � 1.65, Female Right 2: 1.12 � 1.85).  Thus, RP provides two unique and important criteria: 

dichotomous genotype splitting instructions and gene-gene interaction patterns. These criteria go beyond 

the traditional single factor SNP approach to genetic association studies and allow identification of 

important multi-gene pathways that more suitably characterize the etiology of complex diseases.  

 

The Utility of Recursive Partitioning, Multi-factor Dimensionality Reduction and Logistic Regression for 

Identification of Gene-Gene Interactions 

With recent advances in genotyping allowing for high-dimensional SNP identification, it is now possible 

to examine genetic datasets not only for single main factor effects, but also G x G interactions.  The 

requirement for G x G analyses as a better predictor of age-related diseases is obvious from the 

standpoint that humans are complex biological systems composed of numerous molecular interactions, 

and from recent studies indicating disease risk is modulated by G x G interactions (7).  Notwithstanding 

this, the development of analytical tools for the identification of G x G interactions has not kept pace with 
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the technological advances in identifying genetic alterations among individuals.  In this respect, we have 

previously used MDR, LR and LD to identify G x G interactions among a small set of SNPs (7).  However, 

large datasets require a screening tool to identify potential multi-gene interactions.  In this study, we have 

used RP to screen for multi-gene interactions, a data-mining technique that is currently under-utilized in 

genetic studies.  RP serves as an efficient and powerful exploratory analysis technique, especially when 

looking for interactions in data sets with a large number of independent variables.  This screening allows 

for the identification of G x G interactions (with greater explanatory power), that might otherwise not have 

been identified, and that can then be confirmed using more traditional statistical techniques. As illustrated 

in this paper, this data-mining methodology has the advantage of identification of genetic interactions 

between pathways involved in the etiology of depression, in keeping with the etiological heterogeneity of 

this disorder (see later).    

Our study provides proof of principle for the use of RP in higher-dimensional analyses such as GWAS, 

where a comprehensive list of SNPs may fully explore genetic predisposition to depression and other age-

related disease. The WLS is an ideal candidate for future GWAS studies given its large sample size, rich 

covariate composition and longitudinal nature.  

In this genetic study we aimed to identify underlying genetic predispositions to depression and thus 

have not yet tested environmental/phenotypic data.  Future analyses using RP to examine the impact of 

phenotypic and environmental factors on the development of depression would be anticipated to identify 

gene-phenotype/environment and multi-phenotype/environment interactions.  Indeed, the predictive gains 

of G x G analyses were stronger for men than women, despite the fact that depression occurs 

disproportionately in women (~2:1 female-to-male; (20-24)). This suggests that environmental factors may 

be needed in addition to genetic factors in understanding the etiological pathways for women. Indeed, 

biological factors such as hormonal changes related to reproductive status (25, 26) may impact 

environmental factors such as psychosocial experiences (trauma, stress, interpersonal relationships, etc) 

and general health issues in the development of depression.   
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Genetic and Biological Correlates of Depression 

Numerous studies have identified SNPs that associate with depression.  Many of the SNPs associated 

with depression from other studies were not significantly associated in our study.  This is perhaps not 

surprising, since a single factor is unlikely to provide consistent association especially in a complex 

condition such as depression, where multiple pathways intersect in regulating the risk of the disease.  For 

example, if a SNP within the serotonin pathway also requires a SNP in the glutamatergic pathway in order 

for the patient to present with depression, the presence of either SNP in the absence of the other will not 

be predictive of depression. Moreover, as indicated by Shi and Weinberg, since the human genome 

contains genetic redundancy, disruption of a single gene may be selectively neutral, but the malfunction of 

several genes in a pathway might result in expression of a particular phenotype (27). 

Both the primary splits in men and women were SNPs linked with DRD2 (dopamine receptor D2), a 

gene that has previously been linked with depression and social phobia (28-30). The primary male 

genotype split rs1800497, technically found in gene ANKK1, is historically known as the DRD2 Taq1A 

allele because of its known association with decreased dopamine receptor D2 density (in those with T 

alleles) (31-34). The Taq1A allele has also been previously associated with depressive symptoms in 

children, where those with the A1 allele (T) were more likely to have depressive symptoms (35). We saw a 

similar association between A1 and depression in WLS men, where those with two A1 alleles had 2.6 

times higher odds for depression compared to those with one or no A1 alleles. The primary split in women 

(DRD2 rs2242592) has previously been found to be associated with schizophrenia, where the C-allele 

was associated with higher susceptibility for schizophrenia (36).  Interestingly, this same study also found 

the Taq1A allele to also associate with schizophrenia.  

The secondary and tertiary right-hand splits in the female RP tree—FTO (fat mass and obesity 

associated) rs1421085 and IL6 (interleukin 6) rs1800795—have also been found to relate with mental 

illness and depression in previous studies (37, 38).  There is evidence that activin receptor signaling also 

Page 15 of 40

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For peer review
 only

 

 

14

is involved in affective disorders, especially when considering interaction with GABAergic pathways (39). 

Although we did not see an interaction between SNPs in GABA/activin receptor genes and depression, 

ACVR2B was associated with depression in women.  No previous associations between depression and 

APOC3, ACVR2B, or GNRH1 have been reported. 

That these genetic variants are associated with neuroendocrine pathways (GnRH1, ACVR2B) that are 

known to regulate neurotransmitter release and cognitive behavior (39-40) supports these associations as 

relevant to the etiology of depression and underlines the benefits of using RP to identify meaningful G x G 

interactions associated with disease.   

 

Limitations 

Given the numerous genetic, phenotypic and environmental influences that are linked to depression, 

and the small number of SNPs analyzed, it is not surprising that predictability from our models was low 

(although our predictability was superior to previous studies examining only single main factors).  Also, the 

predictive value of our statistical models was further limited due to user bias in selection of SNPs (from 

nearly two-million SNPs in the human genome) used in this study. As a result of this, interactions we have 

found could potentially be moderated by another gene that we have not considered in this study. 

Nonetheless, we identified significant G x G interactions between known, and newly identified, loci 

associated with depression. Importantly, 4 of the 7 SNPs identified in these interactions were primarily 

located in two pathways well-known to impact depression: neurotransmitter and neuroendocrine signaling.  

The results from the RP analyses conducted in this study were confirmed by LR, demonstrating the 

utility of RP as a screening tool for identifying meaningful G x G interactions. Future development of 

algorithms for RP analysis should not only maximize the distance between branches of the next best split 

(i.e. rpart), but consider subsequent future split combinations that could potentially result in trees with 

“better” overall predictability.   
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Summary 

Our data indicate that G x G interaction analyses allows for enhanced predictability of conditions and 

diseases of aging.  RP is an efficient and powerful exploratory analysis technique for elucidating G x G 

interactions in large datasets and combined with LR provides an important statistical analysis for the 

identification of well supported G x G interactions.  We predict that such analytical methods will play an 

increasingly important role in the identification of epistatic effects in future large GWAS.  Finally, our 

studies illustrate how RP analyses can be used to find interacting pathways involved in the etiology of a 

disease or condition such as depression. 
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FIGURE LEGENDS 

 

Figure 1. Recursive Partitioning Tree of CIDI-SF Depression in Males of the WLS. Upper and lower 

numbers in nodes represent the proportion percentage of participants with depression and the number 

of participants controls/cases in that node, respectively. Blue and purple boxes/circles indicate lower 

and higher rates of depression relative to the primary node, respectively. Split information indicates 

gene, SNP, and genotype criteria, respectively. M1 is subset of data referenced in Table 1. Sensitivity: 

0.526, Specificity: 0.598, Accuracy: 0.591. Due to missing genotype information, we lose approximately 

1.5% of participants per split. *rs1800497 is historically known as the DRD2 Taq1A allele 

 

Figure 2. Recursive Partitioning Tree of CIDI-SF Depression in Females of the WLS. Upper and lower 

numbers in nodes represent the proportion percentage of participants with depression and the number 

of participants controls/cases in that node, respectively. Blue and purple boxes/circles indicate lower 

and higher rates of depression relative to the primary node, respectively. Split information indicates 

gene, SNP, and genotype criteria, respectively. F1-F4 are subsets referenced in Table 1. Sensitivity: 

0.607, Specificity: 0.563, Accuracy: 0.572. Due to missing genotype information, we lose approximately 

1.4% of participants per split. 
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Table 1. 
Single-factor logistic regression models based directly off male and female RP tree split criteria (see Figures 1 & 2). Each SNP split 
was first run on the full dataset to represent single main factor effects (“Full Data”) for both males and females. Then the same SNP 
splits were run on specific subsets of data per RP tree splits (M1, F1-F4; “RP-Subsetted Data”). 

Gender RP Split Gene SNP Genotypes 

Full Data RP-Subsetted Data 

OR (95% CI) P-value Subset OR (95% CI) P-value 

Male Primary ANKK1* rs1800497 T/T vs. C/C + C/T 2.55 (1.44-4.51) 0.001 * -- ---- ---- 

 Left GNRH1 novel SNP T/T vs. C/C + T/C 1.43 (1.09-1.88) 0.011 M1 1.57 (1.18-2.08) 0.002 * 

Female Primary DRD2 rs2242592 C/C + T/C vs. T/T 1.32 (1.08-1.62) 0.006 * -- ---- ---- 

 Left 1 APOC3 rs2854116 T/T vs. C/C + T/C 1.28 (1.04-1.57) 0.018 F1 1.55 (1.15-2.09) 0.004 * 

 Left 2 ACVR2B rs3749386 C/C + T/T vs. T/C 1.11 (0.91-1.36) 0.302 F2 2.17 (1.37-3.44) 0.001 * 

 Right 1 FTO rs1421085 C/C + T/T vs. T/C 1.32 (1.08-1.62) 0.007 * F3 1.65 (1.24-2.18) 0.0005 * 

 Right 2 IL6 rs1800795 C/C + G/G vs. C/G 1.12 (0.92-1.37) 0.269 F4 1.85 (1.19-2.89) 0.006 * 

RP, recursive partitioning; OR, odds ratio; CI, confidence interval 
M1: LR analysis was run for only those with genotype DRD2 rs1800497 C/C or C/T 
F1: LR analysis was run for only those with genotype DRD2 rs2242592 T/T 
F2: LR analysis was run for only those with genotypes DRD2 rs2242592 T/T and APOC3 rs2854116 T/T 
F3: LR analysis was run for only those with genotype DRD2 rs2242592 C/C or T/C 
F4: LR analysis was run for only those with genotypes DRD2 rs2242592 C/C or T/C and FTO rs1421085 T/C 
*rs1800497 is historically known as the DRD2 Taq1A allele 
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Supplementary Table 1. Single Nucleotide Polymorphisms Assessed in the WLS 

Gene Encodes SNP Associated disease/behavior 

A2M alpha-2-macroglobulin rs669 Alzheimer's disease (1) 

ACVR2A activin receptor IIA rs1424954 pre-eclampsia (2) 

ACVR2B activin receptor IIB rs3749386 -- 

ADIPOQ adiponectin, C1Q and collagen domain containing rs1501299 diabetes II (3, 4), obesity (5, 6), breast 
cancer (7) 

ADIPOQ adiponectin, C1Q and collagen domain containing rs2241766 diabetes II (3, 4), obesity (8), breast 
cancer (7) 

ACVRL1 activin receptor-like kinase 1 rs2071219 brain arteriovenous malformations (9) 

APOC-3  apolipoprotein C-III rs2854116 nonalcoholic fatty liver disease (10) 

ApoE apolipoprotein E rs429358 Alzheimer's disease (11, 12) 

ApoE apolipoprotein E rs7412 Alzheimer's disease (11, 12) 

AR androgen receptor rs6152 male pattern baldness (13) 

BCKDHB branched chain keto acid dehydrogenase E1, beta polypeptide rs4502885 premature ovarian failure (14) 

BDNF brain-derived neurotrophic factor rs6265 depression (15-17), alcohol 
dependence-related depression (18), 
bipolar disorder (19), schizophrenia (20), 
cognition (21), BMI (22) 

BDNF brain-derived neurotrophic factor rs908867 antidepressant response (23) 

BRCA1 breast cancer 1, early onset rs1799966 breast cancer (24) 

BRCA2 breast cancer 2, early onset homolog rs144848 breast cancer (24) 

CH25H cholesterol 25-hydroxylase rs3802657 -- 

CHRM2 cholinergic receptor, muscarinic 2 rs2061174 alcohol dependence, depression (25) 

CHRM2 cholinergic receptor, muscarinic 2 rs8191992 cognition (26) 

COMT catechol-O-methyltransferase rs4680 ADHD (27), substance abuse (28-31), 
depression (32), antidepressant 
response (33), bipolar disorder (34), 
cognition (35) 

CTSD cathepsin D rs17571 Alzheimer’s disease (36) 

CYP11A1 cytochrome P450, family 11, subfamily A, polypeptide 1 rs8039957 breast cancer (37) 

CYP11B2 cytochrome P450, family 11, subfamily B, polypeptide 2 rs1799998 stroke (38), cardiovascular disease (39) 

DAT1 human dopamine transporter rs11564774 ADHD (40) 

DAT1 human dopamine transporter rs2963238 alcohol-withdrawal seizures (41) 

DISC1 disrupted in schizophrenia 1 rs821616 schizophrenia (42), cognitive aging (43)  

DRD2 dopamine receptor D2 rs17529477 -- 

DRD2/ANKK1 dopamine receptor D2/ ankyrin repeat and kinase domain containing 1 rs1800497 obesity, drug addiction (44) 

DRD2 dopamine receptor D2 rs2242592 schizophrenia (45) 

DRD2 dopamine receptor D2 rs4245147 -- 

DRD2 dopamine receptor D2 rs6277 schizophrenia (46), PTSD (47) 

DRD4 dopamine receptor D4 rs1800955 ADHD (48), heroine addiction (49) 

DTNBP1 dystrobrevin-binding protein 1 rs1018381 schizophrenia (50), cognitive ability (51) 

DTNBP1 dystrobrevin-binding protein 1 rs760761 schizophrenia (52) 

ESR1 estrogen receptor 1 rs7761133 -- 

ESR1 estrogen receptor 1 rs3853248 -- 

FADS2 fatty acid desaturase 2 rs1535 breastfeeding & IQ (53) 
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FADS2 fatty acid desaturase 2 rs174575 breastfeeding & IQ (53) 

FMR1 fragile X mental retardation 1 rs1805420 -- 

FSH follicle stimulating hormone rs6169 -- 

FSHR follicle stimulating hormone receptor rs6166 sterility (54), osteoporosis (55) 

FST follistatin rs12152850 -- 

FST follistatin rs3797297 -- 

FTO fat mass and obesity associated rs1421085 obesity (56-58), mental disorders (59) 

GABBR2 γ-aminobutyric acid B receptor 2 rs1435252 nicotine addiction (60) 

GABBR2 γ-aminobutyric acid B receptor 2 rs2779562 nicotine addiction (60) 

GNRH1 gonadotropin-releasing hormone novel SNP Alzheimer’s disease (61) 

HERC hect domain and RLD 2 rs12913832 eye color (62, 63) 

HFE hemochromatosis rs1799945 hemochromatosis(64) 

HSD17B1 estradiol 17β-dehydrogenase 1 rs12602084 steroid metabolism (65) 

HSD17B1 estradiol 17β-dehydrogenase 1 rs592389 vasomotor symptoms (66), cognition (67) 

5-HTR1A 5-hydroxytryptamine (serotonin) receptor 1A rs878567 mood disorders (68) 

5-HTR2A 5-hydroxytryptamine (serotonin) receptor 2A rs6312 -- 

5-HTR2A 5-hydroxytryptamine (serotonin) receptor 2A rs6314 antidepressant response (69), bipolar 
disorder (70) 

5-HTR2A 5-hydroxytryptamine (serotonin) receptor 2A rs7997012 antidepressant response (71) 

5-HTR2C 5-hydroxytryptamine (serotonin) receptor 2C rs6318 bipolar disorder (72), depression (73) 

5-HTT 5-hydroxytryptamine transporter rs25533 antidepressant response (74) 

5-HTT 5-hydroxytryptamine transporter rs8076005 depressive symptoms (75) 

IGF1 insulin-like growth factor 1 rs12313279 -- 

IL1A interleukin 1, alpha rs17561 chronic rhinosinusitis (76), BMI (77) 

IL6 interleukin 6 rs1800795 arthritis (78), breast cancer (79), 
diabetes (80), depression (81) 

INHA inhibin alpha rs2059693 testicular cancer (82) 

INHA inhibin alpha rs35118453 -- 

INHBA inhibin beta A rs2237436 -- 

INHBB inhibin beta B rs11902591 -- 

KIBRA kidney and brain protein (WWC1) rs17070145 Alzheimer’s disease (83), episodic 
memory (84) 

LEPR leptin receptor rs1137100 diabetes II (85), atherosclerosis (86) 

LHR luteinizing hormone receptor rs4073366 Alzheimer's disease (87) 

MAOA monoamine oxidase A rs3788862 pain (88) 

OXTR oxytocin receptor rs2254298 autism (89, 90), social loneliness (91), 
depressive symptoms & anxiety (92) 

PCK1 phosphoenolpyruvate carboxykinase 1 rs707555 diabetes II (93) 

PGR progesterone receptor rs1042838 ovarian cancer (94), migraine (95), 
menstruation (96), pregnancy loss (97) 

SNAP25 synaptosomal-associated protein 25 rs363050 intelligence (98, 99) 

SSADH succinic semialdehyde dehydrogenase rs2760118 -- 

StAR steroidogenic acute regulatory protein rs3990403 -- 

TFAM transcription factor A, mitochondrial rs1937 Alzheimer's disease (100) 

TFAM transcription factor A, mitochondrial rs2306604 Parkinson’s disease (101) 

TPH1 first tryptophan hydroxylase isoform rs1799913 heroine addiction (102) 
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TPH2 first tryptophan hydroxylase isoform rs11178997 bipolar disorder (103), PTSD symptoms 
(104) 
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Supplementary Table 2. Depression-Associated SNP Identified in the WLS 

Gene Encodes SNP Alleles Chr#/Location Residue Associated disease/behavior 

ACVR2B activin receptor IIB rs3749386 T/C 3/intron 1 -- left-right axis malformations*(1) 

APOC3 apolipoprotein C-III rs2854116 T/C 11/promoter (-455) -- nonalcoholic fatty liver disease(2) 

DRD2/ANKK1 dopamine receptor D2/ankyrin repeat and kinase domain containing 1 rs1800497 C/T 11/exon (ANKK1) Glu713Lys obesity, drug addiction (3) 

DRD2 dopamine receptor D2 rs2242592 T/C 11/3’ -- schizophrenia (4) 

FTO fat mass and obesity associated rs1421085 T/C 16/intron 1 -- obesity (5-7), mental disorders 
(8) 

GNRH1 gonadotropin-releasing hormone novel SNP T/C 8/promoter -- Alzheimer’s disease (9) 

IL6 interleukin 6 rs1800795 C/G 7/promoter (-174) -- arthritis (10), breast cancer (11), 
diabetes (12), depression (13) 

*
Gene association only
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Other analyses 17 Report other analyses done—eg analyses of subgroups and interactions, and 

sensitivity analyses 

Discussion 

Key results 18 Summarise key results with reference to study objectives 

Limitations 19 Discuss limitations of the study, taking into account sources of potential bias or 

imprecision. Discuss both direction and magnitude of any potential bias 

Interpretation 20 Give a cautious overall interpretation of results considering objectives, limitations, 

multiplicity of analyses, results from similar studies, and other relevant evidence 

Generalisability 21 Discuss the generalisability (external validity) of the study results 

Other information 

Funding 22 Give the source of funding and the role of the funders for the present study and, if 

applicable, for the original study on which the present article is based 

 

*Give information separately for exposed and unexposed groups. 

 

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and 

published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely 

available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at 

http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is 

available at http://www.strobe-statement.org. 
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ABSTRACT 

Objectives: Single genetic loci offer little predictive power for the identification of depression.  This study 

examined whether an analysis of gene-gene interactions of 78 single nucleotide polymorphisms in genes 

associated with depression and age-related diseases would identify significant interactions with increased 

predictive power for depression. 

Design: A retrospective cohort study. 

Setting: A survey of participants in the Wisconsin Longitudinal Study. 

Participants: A total of 4,811 persons (2,464 females and 2,347 males) who provided saliva for 

genotyping; the group comes from a randomly selected sample of Wisconsin high school graduates from 

the class of 1957 as well as a randomly selected sibling, almost all of whom are non-Hispanic white.  

Primary outcome measure: Depression as determine by the Composite International Diagnostic 

Interview short-form (CIDI-SF).  

Results: Using a classification tree approach (recursive partitioning (RP)) we identified a number of 

candidate gene-gene interactions associated with depression. The primary SNP splits revealed by RP 

(ANKK1 rs1800497 (also known as DRD2 Taq1A) in men and DRD2 rs224592 in women) were found to 

be significant as single factors by logistic regression (LR) after controlling for multiple testing (P=0.001 for 

both). Without considering interaction effects, only 1 of the 5 subsequent RP splits reached nominal 

significance in logistic regression (FTO rs1421085 in women; P-value=0.008). However, after controlling 

for gene-gene interactions by running logistic regression on RP-specific subsets, every split became 

significant and grew larger in magnitude (OR [before]�[after]: Men: GNRH1 novel SNP: [1.43 � 1.57]; 

Women: APOC3 rs2854116: [1.28 � 1.55], ACVR2B rs3749386: [1.11 � 2.17], FTO rs1421085: [1.32 � 

1.65], IL6 rs1800795: [1.12 � 1.85]). 

Conclusions: Our results suggest that examining gene-gene interactions improves the identification of 

genetic associations predictive of depression. Four of the SNPs identified in these interactions were 

located in two pathways well-known to impact depression: neurotransmitter (ANKK1 and DRD2) and 
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neuroendocrine (GNRH1 and ACVR2B) signaling. This study demonstrates the utility of RP analysis as an 

efficient and powerful exploratory analysis technique for uncovering genetic and molecular pathway 

interactions associated with disease etiology.  
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INTRODUCTION 

Depression is a widespread mental disorder associated with a host of undesirable health, social, and 

economic outcomes. One in six Americans is diagnosed with depression in his or her lifetime (1). While 

many environmental factors—such as socioeconomic status, childhood abuse, and major life events—

have important ties with depression, so too does gender and many genetic and epigenetic factors, making 

the disorder heterogeneous in nature (2). Another major risk factor for depression is age, with depression 

reaching its highest levels in adults over 80 years of age (3). 

It has been demonstrated from twin studies that genetic factors typically account for 40–70% of the risk 

for developing major depressive disorder (MDD), and adoption studies have confirmed the role of genetic 

risk factors in the development of MDD (see (4) and references therein).  Genetic studies, including recent 

genome-wide association studies (GWAS), have identified genetic alterations in over 50 genes known to 

be associated with depression (5).  However, individually, the genetic alterations found within these genes 

(primarily single nucleotide polymorphisms (SNPs)) have little predictive value.  There is a similar lack of 

predictive value from GWAS of other major age-related diseases (6).   

Given this lack of predictive power among individual genetic alterations for depression together with 

the complex nature of aging-related diseases, it would seem prudent to examine epistatic effects on this 

age-related condition. In this respect, we have previously demonstrated that G x G interactions greatly 

modulate risk for complex age-related diseases (7, 8). Recent studies of depression also have identified 

epistatic effects.  In particular, associations have been identified between BDNF Val66Met (brain-derived 

neurotrophic factor; rs6265) and 5-HTTLPR (serotonin transporter linked promoter region (9); GSK3B 

rs6782799 (glycogen synthase kinase 3β), BDNF rs7124442 and BDNF Val66Met (10); BDNF Val66Met 

and SNPs in NTRK2  (neurotrophic tyrosine kinase receptor 2; (11)), and 5-HTTLPR short allele and a 

chromosome 4 gene (12). The machine learning tool recursive partitioning has recently been used by 

Wong (13) to assess complex gene-gene interactions in depression. Wong notes that recursive 

partitioning is useful in that it quickly explores high dimensional data for non-linear effects that are non-
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biased and easily interpretable. 

The goals of this study were therefore to 1) explore G x G interactions that might better predict the 

genetic factors involved in the etiology of depression, and 2) to further demonstrate the utility of machine 

learning algorithms (recursive partitioning) to identify genetic interactions. Using genotypic data from the 

Wisconsin Longitudinal Study (WLS) we identified associations between dopaminergic genes and 

depression in men and women, as well as G x G interactions involving neuroendocrine signaling 

pathways, with increased significance compared with single genetic associations.  
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METHODS 

Study Participants and Surveys 

Data were collected from the WLS, a random sample originally comprised of 10,317 men and women 

who graduated from Wisconsin high schools in 1957. Later in 1977, the WLS began interviewing one 

randomly selected sibling of each graduate, when possible. The cohort reflects the ancestral makeup of 

the late-1950s Wisconsin population in that participants are almost entirely non-Hispanic white males and 

females. . In general, the sample is broadly representative of older white Americans with at least a high 

school education (14). Further characteristics of the WLS cohort may be found in detail elsewhere (15). 

Health and psychological well-being phenotypic data was taken from mail and phone surveys given in 

2004-2005. Inclusion criteria for depression included any member of the WLS cohort who was depressed 

according to the Composite International Diagnostic Interview short-form (CIDI-SF). Individuals who 

answered YES to the question “Have you ever had a time in life lasting two weeks or more when nearly 

every day you felt sad, blue, depressed, or when you lost interest in most things like work, hobbies, or 

things you usually liked to do for fun?” and whose depression was not caused by alcohol, drugs, 

medications, or physical illness were asked further depression symptom questions. Symptom questions 

asked whether the two week period was accompanied with a) any weight loss, b) trouble sleeping, c) 

feeling tired, d) feeling bad upon waking, e) losing interest, f) trouble concentrating, or g) thoughts about 

death. Those answering YES to 3 or more of these symptom questions were classified as having 

depression (16). Those answering YES to 2 or fewer symptom questions and all those answering NO to 

the initial stem question were classified as controls.  

 

Genotyping 

7,101 participants (4,569 graduates & 2,532 siblings) provided saliva samples in Oragene DNA sample 

collection kits from which DNA was extracted and genotyped for 78 SNPs that were selected based on 

their association with depression and age-related conditions and diseases (see Supplementary 
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Information 1).  Genotyping was performed by KBioscience (Hoddesdon, UK) with use of a homogeneous 

Fluorescent Resonance Energy Transfer technology coupled to competitive allele specific PCR.  All SNP 

genotypes described in our results were in Hardy-Weinberg equilibrium and their frequencies matched 

those reported in the literature for European samples.   

 

Statistical Analysis 

Analyses were limited to the 4,811 pooled graduates and siblings for whom we have depression and 

genotype information (Note: individuals with more than 10% missing genotype data were not included). 

The average age among this sample was just under 65 years in 2004. 80% were married, and the 

average amount of post-high school educational attainment was 2 years. Median household income in 

1993 was $56,700.  

 

Recursive Partitioning (RP).    RP is a data mining tool for revealing trends that relate a dependent 

variable (depressed vs. non-depressed) to various predictor variables (SNPs). Zhang and Bonney have 

shown how RP can be used in genetic association studies to identify disease genes (17). RP helps control 

for heterogeneity in the population and confounding factors by allowing for the segregation of the sample 

population according to any condition. Thus, RP is a useful way to handle complex datasets that might 

confound regression analysis due to the complexity of the relationship between the independent and 

dependent variables and due to missing information. 

RP classification trees (using R package rpart) were used to identify potential interactions among the 

78 SNPs in relation to depression. The trees split the data along branches according to criteria determined 

by the rpart package algorithm, which is originally based off the work of Breiman’s classification and 

regression trees (CART) algorithm (18). Basically, the CART algorithm first considers all depressed and 

non-depressed subjects pooled together in a heterogeneous root node. Based on considering every 

possible “yes-no” binary partition that can be made by each independent variable, the single split which 
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maximizes homogeneity between the two resulting sub-nodes as compared to the root node is made. 

Each sub-node can then be treated independently as a new root node for all subsequent splits, and the 

pattern continues until every subject constitutes a terminal node, resulting in a very large and complex 

tree. A 10-part cross validation procedure seeking to minimize misclassification and complexity 

determines optimal pruning. See Therneau and Atkinson (19) for specific details of the rpart package. 

Priors were set to 0.5, 0.5. The usesurrogate parameter was set to 0 so that subjects missing the primary 

split variable do not progress further down the tree, and maxsurrogate was set to 0 to cut computation 

time in half. The threshold complexity parameter (cp) was set to 0.01. Tree nodes were re-created in 

Microsoft Visio to display percentage depressed and the default number of controls/cases as presented by 

rpart. 

 

Logistic Regression (LR).    Variables found in association with depression based on RP analysis were 

considered in single factor LR models, separate by gender, using the specific dichotomous splitting of 

genotypes as designated by RP trees. Regression models for all seven SNP splits were first run on the full 

dataset to represent single main factor effects. Then each split was run on the respective subset of data 

as represented by the preceding RP split criteria. Thus, we attempt to mirror RP splits within a more 

formal LR framework in order to measure the significance of interactions presented by the trees. Multiple 

testing of 78 SNPs in RP for both male and females followed by 14 LR models resulted in a modified FDR 

significance level of 0.009. 
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RESULTS 

Of the 4,811 participants (2,464 females and 2,347 males) under examination in this study, we 

identified 713 participants (481 females and 232 males) with depression (14.8 %).  Given that the 

independent variable gender (when included as a factor in the full dataset) was the primary split on RP 

trees; that women are over two times as likely to be diagnosed with depression than men; and since the 

female etiology of depression has been reported to be associated with unique social, psychological, and 

biological factors (20), all subsequent analyses were performed by gender.  

 

Recursive Partitioning Analysis 

To examine multi-gene interactions for association with depression we screened our dataset using RP. 

The two-factor RP tree (ANKK1/GNRH1) was the optimized pruning for men (Fig. 1), while the five-factor 

tree (DRD2/APOC3/ACVR2B/FTO/IL6) was the optimized pruning for women (Fig. 2). For more detailed 

information on the 7 SNPs found by RP, see Supplementary Information 2.  

The best overall split for men was ANKK1 rs1800497 (historically known as the DRD2 Taq1A allele), 

where the incidence of depression increased 2.2-fold in those with no C-alleles compared to those with 

one or two C-alleles. Considering interaction between ANKK1 and GNRH1 widened the disparity in 

incidence, where those with at least one C-allele in both ANKK1 rs1800497 and the novel SNP in GNRH1 

had a 2.7-fold lower incidence than those without a C-allele in ANKK1 rs1800497.   

For women, the best overall split was DRD2 rs2242592, where those with one or two C-alleles had 

1.3-fold higher incidence of depression compared to those without any C-alleles. G x G interactions 

associated with the highest incidence of depression included: DRD2 rs2242592 T/T + APOC3 rs45537037 

T/T + ACVR2B rs3749386 C/C or T/T, accounting for a 1.4-fold increase in depression compared to 

baseline incidence.   

 

Single Main-Factor Effects 
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Specific SNP interactions identified by RP were next analyzed by LR (see Table 1, Full Data). The 

primary SNP splits in males and females were significant at the modified FDR level. Men with no C-alleles 

for ANKK1 rs1800497 had 2.55 times higher odds [P=0.001 (1.44, 4.51)] of depression compared with 

men with at least 1 C-allele. Women with at least 1 C-allele for DRD2 rs2242592 had 1.32 times higher 

odds [P=0.006 (1.08-1.62)] of depression compared with women with no C-alleles. One other split 

reached nominal significance; women homozygous (C/C or T/T) for FTO rs1421085 had 1.32 times higher 

odds [P=0.008 (1.08-1.62)] for depression than women with a heterozygous genotype. SNP splits of 

GNRH1, APOC3, ACVR2B, and IL6 did not significantly associate with depression.  

 

Gene-Gene Interactions Enhance Predictability for Depression 

Specific SNP interactions identified by RP were next analyzed by LR as RP-specific subsets (see 

Table 1, RP-Subsetted Data). All 5 of the secondary and tertiary RP splits were found to be significant at 

the modified FDR level when considered as subsets. Among only men with at least one C-allele in ANKK1 

rs1800497, those with no C-allele in the novel SNP of GNRH1 had 1.57 times higher odds [P=0.002 (1.18-

2.08)] for depression than men with 1 or 2 C-alleles. For the subset of women in the first right-hand split of 

Fig. 2, those homozygous for FTO rs1421085 had 1.65 times higher odds [P=0.0005 (1.24-2.18)] for 

depression than women with a heterozygous genotype. For the remaining subset of women in the second 

right-hand split of Fig. 2, those homozygous for IL6 rs1800795 had 1.85 times higher odds [P=0.006 

(1.19-2.89)] for depression than women with a heterozygous genotype. For the subset of women in the 

first left-hand split of Fig. 2, those with no C-alleles for APOC3 rs45537037 had 1.55 times higher odds 

[P=0.004 (1.15-2.09)] for depression than women with 1 or 2 C-alleles. For the subset of women in the 

second left-hand split of Fig. 2, those homozygous for ACVR2B rs3749386 had 2.17 times higher odds 

[P=0.001 (1.37-3.44)] for depression than women with a heterozygous genotype.  
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DISCUSSION 

Utilizing RP as a screening tool to find potential multi-gene interactions, followed by verification of 

multi-gene interactions with LR, our data demonstrate that multi-gene interactions predict depression with 

a greater certainty than single main factor associations.  RP provided us with primary dichotomous 

genotype splits in men and women (ANKK1 rs1800497 and DRD2 rs2242592, respectively) that were 

both significant in LR models at the modified FDR level (Table 1). Considering the 5 subsequent RP splits 

in LR over the entire dataset, only 1 reached a nominal level of significance (barely), which was FTO 

rs1421085 in women. However, after running LR on specific subsets of data according to the pattern of 

RP branches, every split was found to be significant and every odds ratios grew larger (Table 1; OR 

[before]�[after]: Male Left: 1.43 � 1.57, Female Left 1: 1.28 � 1.55, Female Left 2: 1.11 � 2.17, Female 

Right 1: 1.32 � 1.65, Female Right 2: 1.12 � 1.85).  Thus, RP provides two unique and important criteria: 

dichotomous genotype splitting instructions and gene-gene interaction patterns. These criteria go beyond 

the traditional single factor SNP approach to genetic association studies and allow identification of 

important multi-gene pathways that more suitably characterize the etiology of complex diseases.  

 

The Utility of Recursive Partitioning and Logistic Regression for Identification of Gene-Gene Interactions 

With recent advances in genotyping allowing for high-dimensional SNP identification, it is now possible 

to examine genetic datasets not only for single main factor effects, but also G x G interactions.  The 

requirement for G x G analyses as a better predictor of age-related diseases is obvious from the 

standpoint that humans are complex biological systems composed of numerous molecular interactions, 

and from recent studies indicating disease risk is modulated by G x G interactions (7).  Notwithstanding 

this, the development of analytical tools for the identification of G x G interactions has not kept pace with 

the technological advances in identifying genetic alterations among individuals.  In this respect, we have 

previously used MDR, LR and LD to identify G x G interactions among a small set of SNPs (7).  However, 

large datasets require a screening tool to identify potential multi-gene interactions.  In this study, we have 
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used RP to screen for multi-gene interactions, a data-mining technique that is currently under-utilized in 

genetic studies.  RP serves as an efficient and powerful exploratory analysis technique, especially when 

looking for interactions in data sets with a large number of independent variables.  This screening allows 

for the identification of G x G interactions (with greater explanatory power), that might otherwise not have 

been identified, and that can then be confirmed using more traditional statistical techniques. As illustrated 

in this paper, this data-mining methodology has the advantage of identification of genetic interactions 

between pathways involved in the etiology of depression, in keeping with the etiological heterogeneity of 

this disorder (see later).    

Our study provides proof of principle for the use of RP in higher-dimensional analyses such as GWAS, 

where a comprehensive list of SNPs may fully explore genetic predisposition to depression and other age-

related disease. The WLS is an ideal candidate for future GWAS studies given its large sample size, rich 

covariate composition and longitudinal nature.  

In this genetic study we aimed to identify underlying genetic predispositions to depression and thus 

have not yet tested environmental/phenotypic data.  Future analyses using RP to examine the impact of 

phenotypic and environmental factors on the development of depression would be anticipated to identify 

gene-phenotype/environment and multi-phenotype/environment interactions.  Indeed, the predictive gains 

of G x G analyses were stronger for men than women, despite the fact that depression occurs 

disproportionately in women (~2:1 female-to-male; (21-25)). This suggests that environmental factors may 

be needed in addition to genetic factors in understanding the etiological pathways for women. Indeed, 

biological factors such as hormonal changes related to reproductive status (26, 27) may impact 

environmental factors such as psychosocial experiences (trauma, stress, interpersonal relationships, etc) 

and general health issues in the development of depression.   

 

Genetic and Biological Correlates of Depression 

Numerous studies have identified SNPs that associate with depression.  Many of the SNPs associated 
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with depression from other studies were not significantly associated in our study.  This is perhaps not 

surprising, since a single factor is unlikely to provide consistent association especially in a complex 

condition such as depression, where multiple pathways intersect in regulating the risk of the disease.  For 

example, if a SNP within the serotonin pathway also requires a SNP in the glutamatergic pathway in order 

for the patient to present with depression, the presence of either SNP in the absence of the other will not 

be predictive of depression. Moreover, as indicated by Shi and Weinberg, since the human genome 

contains genetic redundancy, disruption of a single gene may be selectively neutral, but the malfunction of 

several genes in a pathway might result in expression of a particular phenotype (28). 

Both the primary splits in men and women were SNPs linked with DRD2 (dopamine receptor D2), a 

gene that has previously been linked with depression and social phobia (29-31). The primary male 

genotype split rs1800497, technically found in gene ANKK1, is historically known as the DRD2 Taq1A 

allele because of its known association with decreased dopamine receptor D2 density (in those with T 

alleles) (32-35). The Taq1A allele has also been previously associated with depressive symptoms in 

children, where those with the A1 allele (T) were more likely to have depressive symptoms (36). We saw a 

similar association between A1 and depression in WLS men, where those with two A1 alleles had 2.6 

times higher odds for depression compared to those with one or no A1 alleles. The primary split in women 

(DRD2 rs2242592) has previously been found to be associated with schizophrenia, where the C-allele 

was associated with higher susceptibility for schizophrenia (37).  Interestingly, this same study also found 

the Taq1A allele to also associate with schizophrenia.  

The secondary and tertiary right-hand splits in the female RP tree—FTO (fat mass and obesity 

associated) rs1421085 and IL6 (interleukin 6) rs1800795—have also been found to relate with mental 

illness and depression in previous studies (38, 39).  There is evidence that activin receptor signaling also 

is involved in affective disorders, especially when considering interaction with GABAergic pathways (40). 

Although we did not see an interaction between SNPs in GABA/activin receptor genes and depression, 

ACVR2B was associated with depression in women.  No previous associations between depression and 
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APOC3, ACVR2B, or GNRH1 have been reported. 

That these genetic variants are associated with neuroendocrine pathways (GnRH1, ACVR2B) that are 

known to regulate neurotransmitter release and cognitive behavior (39-40) supports these associations as 

relevant to the etiology of depression and underlines the benefits of using RP to identify meaningful G x G 

interactions associated with disease.   

 

Limitations 

Given the numerous genetic, phenotypic and environmental influences that are linked to depression, 

and the small number of SNPs analyzed, it is not surprising that predictability from our models was low 

(although our predictability was superior to previous studies examining only single main factors).  Also, the 

predictive value of our statistical models was further limited due to user bias in selection of SNPs (from 

nearly two-million SNPs in the human genome) used in this study. As a result of this, interactions we have 

found could potentially be moderated by another gene that we have not considered in this study. 

Nonetheless, we identified significant G x G interactions between known, and newly identified, loci 

associated with depression. Importantly, 4 of the 7 SNPs identified in these interactions were primarily 

located in two pathways well-known to impact depression: neurotransmitter and neuroendocrine signaling.  

The results from the RP analyses conducted in this study were confirmed by LR, demonstrating the 

utility of RP as a screening tool for identifying meaningful G x G interactions. Future development of 

algorithms for RP analysis should not only maximize the distance between branches of the next best split 

(i.e. rpart), but consider subsequent future split combinations that could potentially result in trees with 

“better” overall predictability.   

 

Summary 

Our data indicate that G x G interaction analyses allows for enhanced predictability of conditions and 

diseases of aging.  RP is an efficient and powerful exploratory analysis technique for elucidating G x G 
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interactions in large datasets and combined with LR provides an important statistical analysis for the 

identification of well supported G x G interactions.  We predict that such analytical methods will play an 

increasingly important role in the identification of epistatic effects in future large GWAS.  Finally, our 

studies illustrate how RP analyses can be used to find interacting pathways involved in the etiology of a 

disease or condition such as depression. 
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FIGURE LEGENDS 

 

Figure 1. Recursive Partitioning Tree of CIDI-SF Depression in Males of the WLS. Upper and lower 

numbers in nodes represent the percentage of participants with depression and the number of 

controls/cases in that node, respectively. Blue and purple boxes/circles indicate lower and higher rates 

of depression relative to the primary node, respectively. Split information indicates gene, SNP, and 

genotype criteria, respectively. M1 is subset of data referenced in Table 1. Sensitivity: 0.526, Specificity: 

0.598, Accuracy: 0.591. Due to missing genotype information, we lose approximately 1.5% of 

participants per split. *rs1800497 is historically known as the DRD2 Taq1A allele 

 

Figure 2. Recursive Partitioning Tree of CIDI-SF Depression in Females of the WLS. Upper and lower 

numbers in nodes represent the percentage of participants with depression and the number of 

controls/cases in that node, respectively. Blue and purple boxes/circles indicate lower and higher rates 

of depression relative to the primary node, respectively. Split information indicates gene, SNP, and 

genotype criteria, respectively. F1-F4 are subsets referenced in Table 1. Sensitivity: 0.607, Specificity: 

0.563, Accuracy: 0.572. Due to missing genotype information, we lose approximately 1.4% of 

participants per split. 
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Table 1. 
Single-factor logistic regression models based directly off male and female RP tree split criteria (see Figures 1 & 2). Each SNP split 
was first run on the full dataset to represent single main factor effects (“Full Data”) for both males and females. Then the same SNP 
splits were run on specific subsets of data per RP tree splits (M1, F1-F4; “RP-Subsetted Data”). 

Gender RP Split Gene SNP Genotypes 

Full Data RP-Subsetted Data 

OR (95% CI) P-value Subset OR (95% CI) P-value 

Male Primary ANKK1* rs1800497 T/T vs. C/C + C/T 2.55 (1.44-4.51) 0.001 * -- ---- ---- 

 Left GNRH1 novel SNP T/T vs. C/C + T/C 1.43 (1.09-1.88) 0.011 M1 1.57 (1.18-2.08) 0.002 * 

Female Primary DRD2 rs2242592 C/C + T/C vs. T/T 1.32 (1.08-1.62) 0.006 * -- ---- ---- 

 Left 1 APOC3 rs2854116 T/T vs. C/C + T/C 1.28 (1.04-1.57) 0.018 F1 1.55 (1.15-2.09) 0.004 * 

 Left 2 ACVR2B rs3749386 C/C + T/T vs. T/C 1.11 (0.91-1.36) 0.302 F2 2.17 (1.37-3.44) 0.001 * 

 Right 1 FTO rs1421085 C/C + T/T vs. T/C 1.32 (1.08-1.62) 0.007 * F3 1.65 (1.24-2.18) 0.0005 * 

 Right 2 IL6 rs1800795 C/C + G/G vs. C/G 1.12 (0.92-1.37) 0.269 F4 1.85 (1.19-2.89) 0.006 * 

RP, recursive partitioning; OR, odds ratio; CI, confidence interval 
M1: LR analysis was run for only those with genotype DRD2 rs1800497 C/C or C/T 
F1: LR analysis was run for only those with genotype DRD2 rs2242592 T/T 
F2: LR analysis was run for only those with genotypes DRD2 rs2242592 T/T and APOC3 rs2854116 T/T 
F3: LR analysis was run for only those with genotype DRD2 rs2242592 C/C or T/C 
F4: LR analysis was run for only those with genotypes DRD2 rs2242592 C/C or T/C and FTO rs1421085 T/C 
*rs1800497 is historically known as the DRD2 Taq1A allele 
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Supplementary Table 1. Single Nucleotide Polymorphisms Assessed in the WLS 

Gene Encodes SNP Associated disease/behavior 

A2M alpha-2-macroglobulin rs669 Alzheimer's disease (1) 

ACVR2A activin receptor IIA rs1424954 pre-eclampsia (2) 

ACVR2B activin receptor IIB rs3749386 -- 

ADIPOQ adiponectin, C1Q and collagen domain containing rs1501299 diabetes II (3, 4), obesity (5, 6), breast 
cancer (7) 

ADIPOQ adiponectin, C1Q and collagen domain containing rs2241766 diabetes II (3, 4), obesity (8), breast 
cancer (7) 

ACVRL1 activin receptor-like kinase 1 rs2071219 brain arteriovenous malformations (9) 

APOC-3  apolipoprotein C-III rs2854116 nonalcoholic fatty liver disease (10) 

ApoE apolipoprotein E rs429358 Alzheimer's disease (11, 12) 

ApoE apolipoprotein E rs7412 Alzheimer's disease (11, 12) 

AR androgen receptor rs6152 male pattern baldness (13) 

BCKDHB branched chain keto acid dehydrogenase E1, beta polypeptide rs4502885 premature ovarian failure (14) 

BDNF brain-derived neurotrophic factor rs6265 depression (15-17), alcohol 
dependence-related depression (18), 
bipolar disorder (19), schizophrenia (20), 
cognition (21), BMI (22) 

BDNF brain-derived neurotrophic factor rs908867 antidepressant response (23) 

BRCA1 breast cancer 1, early onset rs1799966 breast cancer (24) 

BRCA2 breast cancer 2, early onset homolog rs144848 breast cancer (24) 

CH25H cholesterol 25-hydroxylase rs3802657 -- 

CHRM2 cholinergic receptor, muscarinic 2 rs2061174 alcohol dependence, depression (25) 

CHRM2 cholinergic receptor, muscarinic 2 rs8191992 cognition (26) 

COMT catechol-O-methyltransferase rs4680 ADHD (27), substance abuse (28-31), 
depression (32), antidepressant 
response (33), bipolar disorder (34), 
cognition (35) 

CTSD cathepsin D rs17571 Alzheimer’s disease (36) 

CYP11A1 cytochrome P450, family 11, subfamily A, polypeptide 1 rs8039957 breast cancer (37) 

CYP11B2 cytochrome P450, family 11, subfamily B, polypeptide 2 rs1799998 stroke (38), cardiovascular disease (39) 

DAT1 human dopamine transporter rs11564774 ADHD (40) 

DAT1 human dopamine transporter rs2963238 alcohol-withdrawal seizures (41) 

DISC1 disrupted in schizophrenia 1 rs821616 schizophrenia (42), cognitive aging (43)  

DRD2 dopamine receptor D2 rs17529477 -- 

DRD2/ANKK1 dopamine receptor D2/ ankyrin repeat and kinase domain containing 1 rs1800497 obesity, drug addiction (44) 

DRD2 dopamine receptor D2 rs2242592 schizophrenia (45) 

DRD2 dopamine receptor D2 rs4245147 -- 

DRD2 dopamine receptor D2 rs6277 schizophrenia (46), PTSD (47) 

DRD4 dopamine receptor D4 rs1800955 ADHD (48), heroine addiction (49) 

DTNBP1 dystrobrevin-binding protein 1 rs1018381 schizophrenia (50), cognitive ability (51) 

DTNBP1 dystrobrevin-binding protein 1 rs760761 schizophrenia (52) 

ESR1 estrogen receptor 1 rs7761133 -- 

ESR1 estrogen receptor 1 rs3853248 -- 

FADS2 fatty acid desaturase 2 rs1535 breastfeeding & IQ (53) 
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FADS2 fatty acid desaturase 2 rs174575 breastfeeding & IQ (53) 

FMR1 fragile X mental retardation 1 rs1805420 -- 

FSH follicle stimulating hormone rs6169 -- 

FSHR follicle stimulating hormone receptor rs6166 sterility (54), osteoporosis (55) 

FST follistatin rs12152850 -- 

FST follistatin rs3797297 -- 

FTO fat mass and obesity associated rs1421085 obesity (56-58), mental disorders (59) 

GABBR2 γ-aminobutyric acid B receptor 2 rs1435252 nicotine addiction (60) 

GABBR2 γ-aminobutyric acid B receptor 2 rs2779562 nicotine addiction (60) 

GNRH1 gonadotropin-releasing hormone novel SNP Alzheimer’s disease (61) 

HERC hect domain and RLD 2 rs12913832 eye color (62, 63) 

HFE hemochromatosis rs1799945 hemochromatosis(64) 

HSD17B1 estradiol 17β-dehydrogenase 1 rs12602084 steroid metabolism (65) 

HSD17B1 estradiol 17β-dehydrogenase 1 rs592389 vasomotor symptoms (66), cognition (67) 

5-HTR1A 5-hydroxytryptamine (serotonin) receptor 1A rs878567 mood disorders (68) 

5-HTR2A 5-hydroxytryptamine (serotonin) receptor 2A rs6312 -- 

5-HTR2A 5-hydroxytryptamine (serotonin) receptor 2A rs6314 antidepressant response (69), bipolar 
disorder (70) 

5-HTR2A 5-hydroxytryptamine (serotonin) receptor 2A rs7997012 antidepressant response (71) 

5-HTR2C 5-hydroxytryptamine (serotonin) receptor 2C rs6318 bipolar disorder (72), depression (73) 

5-HTT 5-hydroxytryptamine transporter rs25533 antidepressant response (74) 

5-HTT 5-hydroxytryptamine transporter rs8076005 depressive symptoms (75) 

IGF1 insulin-like growth factor 1 rs12313279 -- 

IL1A interleukin 1, alpha rs17561 chronic rhinosinusitis (76), BMI (77) 

IL6 interleukin 6 rs1800795 arthritis (78), breast cancer (79), 
diabetes (80), depression (81) 

INHA inhibin alpha rs2059693 testicular cancer (82) 

INHA inhibin alpha rs35118453 -- 

INHBA inhibin beta A rs2237436 -- 

INHBB inhibin beta B rs11902591 -- 

KIBRA kidney and brain protein (WWC1) rs17070145 Alzheimer’s disease (83), episodic 
memory (84) 

LEPR leptin receptor rs1137100 diabetes II (85), atherosclerosis (86) 

LHR luteinizing hormone receptor rs4073366 Alzheimer's disease (87) 

MAOA monoamine oxidase A rs3788862 pain (88) 

OXTR oxytocin receptor rs2254298 autism (89, 90), social loneliness (91), 
depressive symptoms & anxiety (92) 

PCK1 phosphoenolpyruvate carboxykinase 1 rs707555 diabetes II (93) 

PGR progesterone receptor rs1042838 ovarian cancer (94), migraine (95), 
menstruation (96), pregnancy loss (97) 

SNAP25 synaptosomal-associated protein 25 rs363050 intelligence (98, 99) 

SSADH succinic semialdehyde dehydrogenase rs2760118 -- 

StAR steroidogenic acute regulatory protein rs3990403 -- 

TFAM transcription factor A, mitochondrial rs1937 Alzheimer's disease (100) 

TFAM transcription factor A, mitochondrial rs2306604 Parkinson’s disease (101) 

TPH1 first tryptophan hydroxylase isoform rs1799913 heroine addiction (102) 
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3 

TPH2 first tryptophan hydroxylase isoform rs11178997 bipolar disorder (103), PTSD symptoms 
(104) 
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Supplementary Table 2. Depression-Associated SNP Identified in the WLS 

Gene Encodes SNP Alleles Chr#/Location Residue Associated disease/behavior 

ACVR2B activin receptor IIB rs3749386 T/C 3/intron 1 -- left-right axis malformations*(1) 

APOC3 apolipoprotein C-III rs2854116 T/C 11/promoter (-455) -- nonalcoholic fatty liver disease(2) 

DRD2/ANKK1 dopamine receptor D2/ankyrin repeat and kinase domain containing 1 rs1800497 C/T 11/exon (ANKK1) Glu713Lys obesity, drug addiction (3) 

DRD2 dopamine receptor D2 rs2242592 T/C 11/3’ -- schizophrenia (4) 

FTO fat mass and obesity associated rs1421085 T/C 16/intron 1 -- obesity (5-7), mental disorders 
(8) 

GNRH1 gonadotropin-releasing hormone novel SNP T/C 8/promoter -- Alzheimer’s disease (9) 

IL6 interleukin 6 rs1800795 C/G 7/promoter (-174) -- arthritis (10), breast cancer (11), 
diabetes (12), depression (13) 

*
Gene association only
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ABSTRACT 

Objectives: Single genetic loci offer little predictive power for the identification of depression.  This study 

examined whether an analysis of gene-gene interactions of 78 single nucleotide polymorphisms in genes 

associated with depression and age-related diseases would identify significant interactions with increased 

predictive power for depression. 

Design: A retrospective cohort study. 

Setting: A survey of participants in the Wisconsin Longitudinal Study. 

Participants: A total of 4,811 persons (2,464 females and 2,347 males) who provided saliva for 

genotyping; the group comes from a randomly selected sample of Wisconsin high school graduates from 

the class of 1957 as well as a randomly selected sibling, almost all of whom are non-Hispanic white.  

Primary outcome measure: Depression as determine by the Composite International Diagnostic 

Interview short-form (CIDI-SF).  

Results: Using a classification tree approach (recursive partitioning (RP)) we identified a number of 

candidate gene-gene interactions associated with depression. The primary SNP splits revealed by RP 

(ANKK1 rs1800497 (also known as DRD2 Taq1A) in men and DRD2 rs224592 in women) were found to 

be significant as single factors by logistic regression (LR) after controlling for multiple testing (P=0.001 for 

both). Without considering interaction effects, only 1 of the 5 subsequent RP splits reached nominal 

significance in logistic regression (FTO rs1421085 in women; P-value=0.008). However, after controlling 

for gene-gene interactions by running logistic regression on RP-specific subsets, every split became 

significant and grew larger in magnitude (OR [before]�[after]: Men: GNRH1 novel SNP: [1.43 � 1.57]; 

Women: APOC3 rs2854116: [1.28 � 1.55], ACVR2B rs3749386: [1.11 � 2.17], FTO rs1421085: [1.32 � 

1.65], IL6 rs1800795: [1.12 � 1.85]). 

Conclusions: Our results suggest that examining gene-gene interactions improves the identification of 

genetic associations predictive of depression. Four of the SNPs identified in these interactions were 

located in two pathways well-known to impact depression: neurotransmitter (ANKK1 and DRD2) and 
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neuroendocrine (GNRH1 and ACVR2B) signaling. This study demonstrates the utility of RP analysis as an 

efficient and powerful exploratory analysis technique for uncovering genetic and molecular pathway 

interactions associated with disease etiology.  
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INTRODUCTION 

Depression is a widespread mental disorder associated with a host of undesirable health, social, and 

economic outcomes. One in six Americans is diagnosed with depression in his or her lifetime (1). While 

many environmental factors—such as socioeconomic status, childhood abuse, and major life events—

have important ties with depression, so too does gender and many genetic and epigenetic factors, making 

the disorder heterogeneous in nature (2). Another major risk factor for depression is age, with depression 

reaching its highest levels in adults over 80 years of age (3). 

It has been demonstrated from twin studies that genetic factors typically account for 40–70% of the risk 

for developing major depressive disorder (MDD), and adoption studies have confirmed the role of genetic 

risk factors in the development of MDD (see (4) and references therein).  Genetic studies, including recent 

genome-wide association studies (GWAS), have identified genetic alterations in over 50 genes known to 

be associated with depression (5).  However, individually, the genetic alterations found within these genes 

(primarily single nucleotide polymorphisms (SNPs)) have little predictive value.  There is a similar lack of 

predictive value from GWAS of other major age-related diseases (6).   

Given this lack of predictive power among individual genetic alterations for depression together with 

the complex nature of aging-related diseases, it would seem prudent to examine epistatic effects on this 

age-related condition. In this respect, we have previously demonstrated that G x G interactions greatly 

modulate risk for complex age-related diseases (7, 8). Recent studies of depression also have identified 

epistatic effects.  In particular, associations have been identified between BDNF Val66Met (brain-derived 

neurotrophic factor; rs6265) and 5-HTTLPR (serotonin transporter linked promoter region (9); GSK3B 

rs6782799 (glycogen synthase kinase 3β), BDNF rs7124442 and BDNF Val66Met (10); BDNF Val66Met 

and SNPs in NTRK2  (neurotrophic tyrosine kinase receptor 2; (11)), and 5-HTTLPR short allele and a 

chromosome 4 gene (12). The machine learning tool recursive partitioning has recently been used by 

Wong (13) in order to assess complex gene-gene interactions in depression. Wong notes that recursive 

partitioning is useful in that it quickly explores high dimensional data for non-linear effects that are non-
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biased and easily interpretable. 

The goals of this study were therefore to 1) explore G x G interactions that might better predict the 

genetic factors involved in the etiology of depression, and 2) to further demonstrate the utility of machine 

learning algorithms (recursive partitioning) to identify genetic interactions. Using genotypic data from the 

Wisconsin Longitudinal Study (WLS) we identified associations between dopaminergic genes and 

depression in men and women, as well as G x G interactions involving neuroendocrine signaling 

pathways, with increased significance compared with single genetic associations.  

Page 45 of 66

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For peer review
 only

 

 

6 

METHODS 

Study Participants and Surveys 

Data were collected from the WLS, a random sample originally comprised of 10,317 men and women 

who graduated from Wisconsin high schools in 1957. Later in 1977, the WLS began interviewing one 

randomly selected sibling of each graduate, when possible. The cohort reflects the ancestral makeup of 

the late-1950s Wisconsin population in that participants are almost entirely non-Hispanic white males and 

females. . In general, the sample is broadly representative of older white Americans with at least a high 

school education (14). Further characteristics of the WLS cohort may be found in detail elsewhere (15). 

Health and psychological well-being phenotypic data was taken from mail and phone surveys given in 

2004-2005. Inclusion criteria for depression included any member of the WLS cohort who was depressed 

according to the Composite International Diagnostic Interview short-form (CIDI-SF). Individuals who 

answered YES to the question “Have you ever had a time in life lasting two weeks or more when nearly 

every day you felt sad, blue, depressed, or when you lost interest in most things like work, hobbies, or 

things you usually liked to do for fun?” and whose depression was not caused by alcohol, drugs, 

medications, or physical illness were asked further depression symptom questions. Symptom questions 

asked whether the two week period was accompanied with a) any weight loss, b) trouble sleeping, c) 

feeling tired, d) feeling bad upon waking, e) losing interest, f) trouble concentrating, or g) thoughts about 

death. Those answering YES to 3 or more of these symptom questions were classified as having 

depression (16). Those answering YES to 2 or fewer symptom questions and all those answering NO to 

the initial stem question were classified as controls.  

Data were collected from the WLS, a random sample originally comprised of 10 317 men and women 

who graduated from Wisconsin high schools in 1957. Later in 1977, the WLS began interviewing one 

randomly selected sibling of each graduate, when possible. The cohort consists reflects the ancestral 

makeup of the late-1950s Wisconsin population in that participants are almost entirely of non-Hispanic 

white personsmales and females. whose average level of educational attainment was 1.5 years of post-
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high school education at the time of interview in 2004. Ages of participants in the WLS ranged from 35 to 

90 years old at this time, with 83% of participants being between 60 and 70 years old. In general, the 

sample is broadly representative of older white Americans with at least a high school education (14). 

Further characteristics of the WLS cohort may be found in detail elsewhere (15). Health and psychological 

well-being phenotypic data was taken from mail and phone surveys given in 2004-2005. Our main 

measure of depression is based on a variation of the Composite International Diagnostic Interview short-

form (CIDI-SF). All participants answered a single stem question: “Have you ever had a time in life lasting 

two weeks or more when nearly every day you felt sad, blue, depressed, or when you lost interest in most 

things like work, hobbies, or things you usually liked to do for fun?” Only those who answered YES and 

whose depression was not always caused by alcohol, drugs, medications, or physical illness were asked 

further depression symptom questions. Symptom questions asked whether the two week period was 

accompanied with a) any weight loss, b) trouble sleeping, c) feeling tired, d) feeling bad upon waking, e) 

losing interest, f) trouble concentrating, or g) thoughts about death. Those answering YES to 3 or more of 

these symptom questions were classified as having depression (16). Those answering YES to 2 or fewer 

symptom questions and all those answering NO to the initial stem question were classified as controls.  

 

Genotyping 

7,101 participants (4,569 graduates & 2,532 siblings) provided saliva samples in Oragene DNA sample 

collection kits from which DNA was extracted and genotyped for 78 SNPs that were selected based on 

their association with depression and age-related conditions and diseases (see Supplementary 

Information 1).  Genotyping was performed by KBioscience (Hoddesdon, UK) with use of a homogeneous 

Fluorescent Resonance Energy Transfer technology coupled to competitive allele specific PCR.  All SNP 

genotypes described in our results were in Hardy-Weinberg equilibrium and their frequencies matched 

those reported in the literature for European samples.   
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Statistical Analysis 

Analyses were limited to the 4,811 pooled graduates and siblings for whom we have depression and 

genotype information (Note: individuals with more than 10% missing genotype data were not included). 

The average age among this sample was just under 65 years in 2004. 80% were married, and the 

average amount of post-high school educational attainment was 2 years. Median household income in 

1993 was $56,700.  

 

Recursive Partitioning (RP).    RP is a data mining tool for revealing trends that relate a dependent 

variable (depressed vs. non-depressed) to various predictor variables (SNPs). Zhang and Bonney have 

shown how RP can be used in genetic association studies to identify disease genes (17). RP helps control 

for heterogeneity in the population and confounding factors by allowing for the segregation of the sample 

population according to any condition. Thus, RP is a useful way to handle complex datasets that might 

confound regression analysis due to the complexity of the relationship between the independent and 

dependent variables and due to missing information. 

RP classification trees (using R package rpart) were used to identify potential interactions among the 

78 SNPs in relation to depression. The trees split the data along branches according to criteria determined 

by the rpart package algorithm, which is originally based off the work of Breiman’s classification and 

regression trees (CART) algorithm (18). Basically, the CART algorithm first considers all depressed and 

non-depressed subjects pooled together in a heterogeneous root node. Based on considering every 

possible “yes-no” binary partition that can be made by each independent variable, the single split which 

maximizes homogeneity between the two resulting sub-nodes as compared to the root node is made. 

Each sub-node can then be treated independently as a new root node for all subsequent splits, and the 

pattern continues until every subject constitutes a terminal node, resulting in a very large and complex 

tree. A 10-part cross validation procedure seeking to minimize misclassification and complexity 

determines optimal pruning. See Therneau and Atkinson (19) for specific details of the rpart package. 
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Priors were set to 0.5, 0.5. The usesurrogate parameter was set to 0 so that subjects missing the primary 

split variable do not progress further down the tree, and maxsurrogate was set to 0 to cut computation 

time in half. The threshold complexity parameter (cp) was set to 0.01. Tree nodes were re-created in 

Microsoft Visio to display percentage depressed depression incidence (in %) and total number of 

participants rather thanand the default number of controls/cases as presented by rpart. 

 

Logistic Regression (LR).    Variables found in association with depression based on RP analysis were 

considered in single factor LR models, separate by gender, using the specific dichotomous splitting of 

genotypes as designated by RP trees. Regression models for all seven SNP splits were first run on the full 

dataset to represent single main factor effects. Then each split was run on the respective subset of data 

as represented by the preceding RP split criteria. Thus, we attempt to mirror RP splits within a more 

formal LR framework in order to measure the significance of interactions presented by the trees. Multiple 

testing of 78 SNPs in RP for both male and females followed by 14 LR models resulted in a modified FDR 

significance level of 0.009. 
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RESULTS 

Of the 4,811 participants (2,464 females and 2,347 males) under examination in this study, we 

identified 713 participants (481 females and 232 males) with depression (14.8 %).  Given that the 

independent variable gender (when included as a factor in the full dataset) was the primary split on RP 

trees; that women are over two times as likely to be diagnosed with depression than men; and since the 

female etiology of depression has been reported to be associated with unique social, psychological, and 

biological factors (20), all subsequent analyses were performed by gender.  

 

Recursive Partitioning Analysis 

To examine multi-gene interactions for association with depression we screened our dataset using RP. 

The two-factor RP tree (ANKK1/GNRH1) was the optimized pruning for men (Fig. 1), while the five-factor 

tree (DRD2/APOC3/ACVR2B/FTO/IL6) was the optimized pruning for women (Fig. 2). For more detailed 

information on the 7 SNPs found by RP, see Supplementary Information 2. Note that subjects are lost in 

every step down each tree due to missing genotype information. We lose approximately 1.5% of data per 

split in men and 1.4% of data per split in women. 

The best overall split for men was ANKK1 rs1800497 (historically known as the DRD2 Taq1A allele), 

where the incidence of depression increased 2.2-fold in those with no C-alleles compared to those with 

one or two C-alleles. Considering interaction between ANKK1 and GNRH1 widened the disparity in 

incidence, where those with at least one C-allele in both ANKK1 rs1800497 and the novel SNP in GNRH1 

had a 2.7-fold lower incidence than those without a C-allele in ANKK1 rs1800497.   

For women, the best overall split was DRD2 rs2242592, where those with one or two C-alleles had 

1.3-fold higher incidence of depression compared to those without any C-alleles. G x G interactions 

associated with the highest incidence of depression included: DRD2 rs2242592 T/T + APOC3 rs45537037 

T/T + ACVR2B rs3749386 C/C or T/T, accounting for a 1.4-fold increase in depression compared to 

baseline incidence.   
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Single Main-Factor Effects 

Specific SNP interactions identified by RP were next analyzed by LR (see Table 1, Full Data). The 

primary SNP splits in males and females were significant at the modified FDR level. Men with no C-alleles 

for ANKK1 rs1800497 had 2.55 times higher odds [P=0.001 (1.44, 4.51)] of depression compared with 

men with at least 1 C-allele. Women with at least 1 C-allele for DRD2 rs2242592 had 1.32 times higher 

odds [P=0.006 (1.08-1.62)] of depression compared with women with no C-alleles. One other split 

reached nominal significance; women homozygous (C/C or T/T) for FTO rs1421085 had 1.32 times higher 

odds [P=0.008 (1.08-1.62)] for depression than women with a heterozygous genotype. SNP splits of 

GNRH1, APOC3, ACVR2B, and IL6 did not significantly associate with depression.  

 

Gene-Gene Interactions Enhance Predictability for Depression 

Specific SNP interactions identified by RP were next analyzed by LR as RP-specific subsets (see 

Table 1, RP-Subsetted Data). All 5 of the secondary and tertiary RP splits were found to be significant at 

the modified FDR level when considered as subsets. Among only men with at least one C-allele in ANKK1 

rs1800497, those with no C-allele in the novel SNP of GNRH1 had 1.57 times higher odds [P=0.002 (1.18-

2.08)] for depression than men with 1 or 2 C-alleles. For the subset of women in the first right-hand split of 

Fig. 2, those homozygous for FTO rs1421085 had 1.65 times higher odds [P=0.0005 (1.24-2.18)] for 

depression than women with a heterozygous genotype. For the remaining subset of women in the second 

right-hand split of Fig. 2, those homozygous for IL6 rs1800795 had 1.85 times higher odds [P=0.006 

(1.19-2.89)] for depression than women with a heterozygous genotype. For the subset of women in the 

first left-hand split of Fig. 2, those with no C-alleles for APOC3 rs45537037 had 1.55 times higher odds 

[P=0.004 (1.15-2.09)] for depression than women with 1 or 2 C-alleles. For the subset of women in the 

second left-hand split of Fig. 2, those homozygous for ACVR2B rs3749386 had 2.17 times higher odds 

[P=0.001 (1.37-3.44)] for depression than women with a heterozygous genotype.  

Page 51 of 66

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For peer review
 only

 

 

12

 

  

DISCUSSION 

Utilizing RP as a screening tool to find potential multi-gene interactions, followed by verification of 

multi-gene interactions with LR, our data demonstrate that multi-gene interactions predict depression with 

a greater certainty than single main factor associations.  RP provided us with primary dichotomous 

genotype splits in men and women (ANKK1 rs1800497 and DRD2 rs2242592, respectively) that were 

both significant in LR models at the modified FDR level (Table 1). Considering the 5 subsequent RP splits 

in LR over the entire dataset, only 1 reached a nominal level of significance (barely), which was FTO 

rs1421085 in women. However, after running LR on specific subsets of data according to the pattern of 

RP branches, every split was found to be significant and every odds ratios grew larger (Table 1; OR 

[before]�[after]: Male Left: 1.43 � 1.57, Female Left 1: 1.28 � 1.55, Female Left 2: 1.11 � 2.17, Female 

Right 1: 1.32 � 1.65, Female Right 2: 1.12 � 1.85).  Thus, RP provides two unique and important criteria: 

dichotomous genotype splitting instructions and gene-gene interaction patterns. These criteria go beyond 

the traditional single factor SNP approach to genetic association studies and allow identification of 

important multi-gene pathways that more suitably characterize the etiology of complex diseases.  

 

The Utility of Recursive Partitioningand Logistic Regression for Identification of Gene-Gene Interactions 

With recent advances in genotyping allowing for high-dimensional SNP identification, it is now possible 

to examine genetic datasets not only for single main factor effects, but also G x G interactions.  The 

requirement for G x G analyses as a better predictor of age-related diseases is obvious from the 

standpoint that humans are complex biological systems composed of numerous molecular interactions, 

and from recent studies indicating disease risk is modulated by G x G interactions (7).  Notwithstanding 

this, the development of analytical tools for the identification of G x G interactions has not kept pace with 

the technological advances in identifying genetic alterations among individuals.  In this respect, we have 

Page 52 of 66

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For peer review
 only

 

 

13

previously used MDR, LR and LD to identify G x G interactions among a small set of SNPs (7).  However, 

large datasets require a screening tool to identify potential multi-gene interactions.  In this study, we have 

used RP to screen for multi-gene interactions, a data-mining technique that is currently under-utilized in 

genetic studies.  RP serves as an efficient and powerful exploratory analysis technique, especially when 

looking for interactions in data sets with a large number of independent variables.  This screening allows 

for the identification of G x G interactions (with greater explanatory power), that might otherwise not have 

been identified, and that can then be confirmed using more traditional statistical techniques. As illustrated 

in this paper, this data-mining methodology has the advantage of identification of genetic interactions 

between pathways involved in the etiology of depression, in keeping with the etiological heterogeneity of 

this disorder (see later).    

Our study provides proof of principle for the use of RP in higher-dimensional analyses such as GWAS, 

where a comprehensive list of SNPs may fully explore genetic predisposition to depression and other age-

related disease. The WLS is an ideal candidate for future GWAS studies given its large sample size, rich 

covariate composition and longitudinal nature.  

In this genetic study we aimed to identify underlying genetic predispositions to depression and thus 

have not yet tested environmental/phenotypic data.  Future analyses using RP to examine the impact of 

phenotypic and environmental factors on the development of depression would be anticipated to identify 

gene-phenotype/environment and multi-phenotype/environment interactions.  Indeed, the predictive gains 

of G x G analyses were stronger for men than women, despite the fact that depression occurs 

disproportionately in women (~2:1 female-to-male; (21-25)). This suggests that environmental factors may 

be needed in addition to genetic factors in understanding the etiological pathways for women. Indeed, 

biological factors such as hormonal changes related to reproductive status (26, 27) may impact 

environmental factors such as psychosocial experiences (trauma, stress, interpersonal relationships, etc) 

and general health issues in the development of depression.   
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Genetic and Biological Correlates of Depression 

Numerous studies have identified SNPs that associate with depression.  Many of the SNPs associated 

with depression from other studies were not significantly associated in our study.  This is perhaps not 

surprising, since a single factor is unlikely to provide consistent association especially in a complex 

condition such as depression, where multiple pathways intersect in regulating the risk of the disease.  For 

example, if a SNP within the serotonin pathway also requires a SNP in the glutamatergic pathway in order 

for the patient to present with depression, the presence of either SNP in the absence of the other will not 

be predictive of depression. Moreover, as indicated by Shi and Weinberg, since the human genome 

contains genetic redundancy, disruption of a single gene may be selectively neutral, but the malfunction of 

several genes in a pathway might result in expression of a particular phenotype (28). 

Both the primary splits in men and women were SNPs linked with DRD2 (dopamine receptor D2), a 

gene that has previously been linked with depression and social phobia (29-31). The primary male 

genotype split rs1800497, technically found in gene ANKK1, is historically known as the DRD2 Taq1A 

allele because of its known association with decreased dopamine receptor D2 density (in those with T 

alleles) (32-35). The Taq1A allele has also been previously associated with depressive symptoms in 

children, where those with the A1 allele (T) were more likely to have depressive symptoms (36). We saw a 

similar association between A1 and depression in WLS men, where those with two A1 alleles had 2.6 

times higher odds for depression compared to those with one or no A1 alleles. The primary split in women 

(DRD2 rs2242592) has previously been found to be associated with schizophrenia, where the C-allele 

was associated with higher susceptibility for schizophrenia (37).  Interestingly, this same study also found 

the Taq1A allele to also associate with schizophrenia.  

The secondary and tertiary right-hand splits in the female RP tree—FTO (fat mass and obesity 

associated) rs1421085 and IL6 (interleukin 6) rs1800795—have also been found to relate with mental 

illness and depression in previous studies (38, 39).  There is evidence that activin receptor signaling also 

is involved in affective disorders, especially when considering interaction with GABAergic pathways (40). 
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Although we did not see an interaction between SNPs in GABA/activin receptor genes and depression, 

ACVR2B was associated with depression in women.  No previous associations between depression and 

APOC3, ACVR2B, or GNRH1 have been reported. 

That these genetic variants are associated with neuroendocrine pathways (GnRH1, ACVR2B) that are 

known to regulate neurotransmitter release and cognitive behavior (39-40) supports these associations as 

relevant to the etiology of depression and underlines the benefits of using RP to identify meaningful G x G 

interactions associated with disease.   

 

Limitations 

Given the numerous genetic, phenotypic and environmental influences that are linked to depression, 

and the small number of SNPs analyzed, it is not surprising that predictability from our models was low 

(although our predictability was superior to previous studies examining only single main factors).  Also, the 

predictive value of our statistical models was further limited due to user bias in selection of SNPs (from 

nearly two-million SNPs in the human genome) used in this study. As a result of this, interactions we have 

found could potentially be moderated by another gene that we have not considered in this study. 

Nonetheless, we identified significant G x G interactions between known, and newly identified, loci 

associated with depression. Importantly, 4 of the 7 SNPs identified in these interactions were primarily 

located in two pathways well-known to impact depression: neurotransmitter and neuroendocrine signaling.  

The results from the RP analyses conducted in this study were confirmed by LR, demonstrating the 

utility of RP as a screening tool for identifying meaningful G x G interactions. Future development of 

algorithms for RP analysis should not only maximize the distance between branches of the next best split 

(i.e. rpart), but consider subsequent future split combinations that could potentially result in trees with 

“better” overall predictability.   

 

Summary 
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Our data indicate that G x G interaction analyses allows for enhanced predictability of conditions and 

diseases of aging.  RP is an efficient and powerful exploratory analysis technique for elucidating G x G 

interactions in large datasets and combined with LR provides an important statistical analysis for the 

identification of well supported G x G interactions.  We predict that such analytical methods will play an 

increasingly important role in the identification of epistatic effects in future large GWAS.  Finally, our 

studies illustrate how RP analyses can be used to find interacting pathways involved in the etiology of a 

disease or condition such as depression. 
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FIGURE LEGENDS 

 

Figure 1. Recursive Partitioning Tree of CIDI-SF Depression in Males of the WLS. Upper and lower 

numbers in nodes represent the percentage of participants with depression and the number of 

controls/cases in that node, respectively. Blue and purple boxes/circles indicate lower and higher rates 

of depression relative to the primary node, respectively. Split information indicates gene, SNP, and 

genotype criteria, respectively. M1 is subset of data referenced in Table 1. Sensitivity: 0.526, Specificity: 

0.598, Accuracy: 0.591. Due to missing genotype information, we lose approximately 1.5% of 

participants per split. *rs1800497 is historically known as the DRD2 Taq1A allele 

 

Figure 2. Recursive Partitioning Tree of CIDI-SF Depression in Females of the WLS. Upper and lower 

numbers in nodes represent the percentage of participants with depression and the number of 

controls/cases in that node, respectively. Blue and purple boxes/circles indicate lower and higher rates 

of depression relative to the primary node, respectively. Split information indicates gene, SNP, and 

genotype criteria, respectively. F1-F4 are subsets referenced in Table 1. Sensitivity: 0.607, Specificity: 

0.563, Accuracy: 0.572. Due to missing genotype information, we lose approximately 1.4% of 

participants per split. 
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Table 1. 
Single-factor logistic regression models based directly off male and female RP tree split criteria (see Figures 1 & 2). Each SNP split 
was first run on the full dataset to represent single main factor effects (“Full Data”) for both males and females. Then the same SNP 
splits were run on specific subsets of data per RP tree splits (M1, F1-F4; “RP-Subsetted Data”). 

Gender RP Split Gene SNP Genotypes 

Full Data RP-Subsetted Data 

OR (95% CI) P-value Subset OR (95% CI) P-value 

Male Primary ANKK1* rs1800497 T/T vs. C/C + C/T 2.55 (1.44-4.51) 0.001 * -- ---- ---- 

 Left GNRH1 novel SNP T/T vs. C/C + T/C 1.43 (1.09-1.88) 0.011 M1 1.57 (1.18-2.08) 0.002 * 

Female Primary DRD2 rs2242592 C/C + T/C vs. T/T 1.32 (1.08-1.62) 0.006 * -- ---- ---- 

 Left 1 APOC3 rs2854116 T/T vs. C/C + T/C 1.28 (1.04-1.57) 0.018 F1 1.55 (1.15-2.09) 0.004 * 

 Left 2 ACVR2B rs3749386 C/C + T/T vs. T/C 1.11 (0.91-1.36) 0.302 F2 2.17 (1.37-3.44) 0.001 * 

 Right 1 FTO rs1421085 C/C + T/T vs. T/C 1.32 (1.08-1.62) 0.007 * F3 1.65 (1.24-2.18) 0.0005 * 

 Right 2 IL6 rs1800795 C/C + G/G vs. C/G 1.12 (0.92-1.37) 0.269 F4 1.85 (1.19-2.89) 0.006 * 

RP, recursive partitioning; OR, odds ratio; CI, confidence interval 
M1: LR analysis was run for only those with genotype DRD2 rs1800497 C/C or C/T 
F1: LR analysis was run for only those with genotype DRD2 rs2242592 T/T 
F2: LR analysis was run for only those with genotypes DRD2 rs2242592 T/T and APOC3 rs2854116 T/T 
F3: LR analysis was run for only those with genotype DRD2 rs2242592 C/C or T/C 
F4: LR analysis was run for only those with genotypes DRD2 rs2242592 C/C or T/C and FTO rs1421085 T/C 
*rs1800497 is historically known as the DRD2 Taq1A allele 
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