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Text S2: Inferring admixture proportions from the asymptotic pattern of
the eigenvector-plot: two-way admixture

If there are three populations, K = 3, the reduced eigenequation
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can be analytically solved. In addition to the trivial solution
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1
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there are two more solutions, of which the eigenvalues are the solutions of
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In the asymptotic limit (N → ∞), the reduced eigenequation is
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The two eigenvalues then are determined by
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[(n1 + n2)σ̂12 + (n1 + n3)σ̂13 + (n2 + n3)σ̂23] +

[n1σ̂12σ̂13 + n2σ̂12σ̂23 + n3σ̂13σ̂23] = 0.

The coefficients of this equation is independent of N , and hence its solutions are linear functions of N .
Now suppose that population P3 is an admixed population of the other two populations, P1 and P2,

with admixture proportions α:(1 − α). Using the expressions derived in Text S1, we have, after tedious
algebra,
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These expressions lead to an important sum-rule

n1σ̂12σ̂13 + n2σ̂12σ̂23 + n3σ̂13σ̂23 = 0.

The two asymptotic eigenvalues are now
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Substituting the non-zero eigenvalue, λ∗

1
, into the eigenequation, we find that the eigenvector satisfies

x1a = x2b = x3c,

where
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b = −λ∗

1
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c = −λ∗

1
σ̂12.

Hence, up to a normalization constant, the eigenvector is
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Finally, we have

x3 − x1

x2 − x1

= 1 − α
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= α.

For the other eigenvalue, λ∗

2
= 0, the corresponding eigenvector, (X1, X2, X3)

T , can be obtained as
follows. It must be orthogonal with (1, 1, 1), the first eigenvector:

n1X1 + n2X2 + n3X3 = 0,

and with the one corresponding to λ∗

1

n1x1X1 + n2x2X2 + n3x3X3 = 0.

This leads to the expression of the eigenvector:
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