
Appendix A 

Let us look at a generalized linear model (GLM), , where  is the weight 

parameter,  indicates the estimated probability of a pattern , and  is a link 

function such that . 

Hosmer and Lemeshow describe different approaches to calculate the confidence intervals of predictions with and without 

the covariance matrix of the Logistic Regression coefficients46. Here we focus on the scenario when we have the estimated 

coefficients as well as an estimate of the covariance matrix. Without knowledge of these items, it is currently not possible to 

estimate individualized confidence interval of test cases, as Hosmer and Lemeshow46 have previous reported. Given both 

coefficients and covariance matrix, we can estimate confidence intervals of predictions through a two-step procedure. First, 

we estimate the variance of . Then, we use the Delta method51 to estimate the true variance of . The idea is to treat iw  

as a random variable while fixing  as a constant factor. The variance of a linked prediction  can be estimated by: 

                  (1) 

 
where corresponds to the covariance matrix of the parameters, , and . Because 

 and , we can derive  

using the Delta method51 so that 

                    (2) 

When the link function  (log-loss function), Equation (4) can be converted into 

                                (3) 

where . Therefore, the 95% CI of  is . Since  is 

maximized when the predicted score is , the confidence intervals are wide since they are close to the decision 

boundary. On the other hand, , the covariance matrix of weight parameters will have large values for feature dimensions 

that are sparsely populated (i.e., few training samples), and small values for feature dimensions that are densely populated. 

Therefore, if a pattern  is observed in a sparse region of the feature space, its associated elements in  will be large, and 

therefore the term  will be large. Similarly, this implies 

 

is small if  is observed in 

a dense region.  



Appendix B 

To check the method’s applicability to select models learned with different features, we did additional experiments by 

applying APAPT to a variation of myocardial infarction data in Section 3.2.2. Specifically, we used all 48 features to 

construct a local model for the Edinburgh training cohort, and we used 9 features (i.e., ST elevation, New Q waves, 

Hypoperfusion, ST depression, Vomiting, LVF, T wave inversion, Pain in right arm, and Nausea) suggested by Kennedy47 to 

construct another local model for the Sheffield training cohort. We used the same study design and compared other strategies 

to ADAPT as described in Table 4 in terms of AUCs and p-values (HL decile-based test). The results, as indicated in Figure 

B1, show that for Sheffield test data, ADAPT has lower AUCs compared to S2S (p=0.03), higher AUCs compared to 

RANDOM (p<0.01), and comparable AUCs compared to E2S (p=0.43). For the Edinburgh test data, ADAPT has lower 

AUCs compared to E2E (p<0.01), higher AUCs compared to RANDOM (p<0.01), and higher AUCs compared to S2E 

(p<0.01). Regarding calibration, when evaluated on Sheffield test data, the difference between ADAPT and E2S (p=0.35) and 

the difference between ADAPT and RANDOM (p=0.98) are not significant. When evaluated on Edinburgh test data, ADAPT 

shows better calibration than S2E (p=0.03) and RANDOM (p=0.03). For both experiments, ADAPT is inferior only to the 

best performing strategies (i.e., E2E and S2S), which are based on patient cohort memberships.  
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Figure B1: Comparison of effectiveness of different strategies (i.e., BEST, CROSS, RANDOM, and ADAPT) in 
discrimination (Areas Under the ROC Curve - AUC) and calibration (p-value for Hosmer-Lemeshow decile-based test) for 
selecting “appropriate” models, which are trained with different features using myocardial infarction data. Note that x+/-y in 
the labels of x-axis indicates that the mean equals x, and the standard deviation equals y. 


