


Figure S1. Growth of wild type and $\Delta ralp3$ mutant strains in CDM supplemented with different carbon sources in varied amounts.

Figure S2. Determination of the CFU during the growth on CDM-Lactose and CDM-Fructose. wt: wild type control; $\Delta ralp3$: $\Delta ralp3$ deletion mutant control; wt/co and $\Delta ralp3/co$: both strains in a direct competition. (n = 3; *** *p* < 0.001).

Gene l	Fold change Δ <i>ralp3</i> (22)	Fold change ∆ <i>ralp3</i> (this study)
speB	1	Ļ
emm	1	₽
mga	1	
ska	•	•
eno	↓	•
epf	1	•
sagA	•	•
сра	•	•
Phenotype	(22	This study
Hyaluronic acid	1	Ļ
Blood survival	1	1
SpeB activity	1	1
Adherence/Interna	alization 1	

Figure S3. Comparison of the gene regulation and phenotype between GAS M1T1 (19) and GAS M49 from this study.