
Volume 14 Number 1 1986 Nucleic Acids Research

Algorithms for the search of amino acid patterns in nucleic acid sequences

Hannu Peltola, Hans S6derlund1 and Esko Ukkonen

Department of Computer Science, University of Helsinki, Tukholmankatu 2, SF-00250 Helsinki, and
'Recombinant DNA-laboratory, University of Helsinki, Valimotie 7, SF-00380 Helsinki, Finland

Received 18 July 1985

ABSTRACT
Some algorithms are described for the search of regions in

a nucleic acid sequence that, when translated into amino acids,
are homologous to a given amino acid pattern. All algorithms are
modifications of the dynamic programming method for sequence
comparison such that the translation of codons is taken into
account. One of the algorithms has been implemented as a
FORTRAN 77 program. The program operates on files that follow
the format of the EMBL Nucleotide Sequence Data Library.

INTRODUCTION

Several algorithms and computer programs have been devel-

oped during the past few years for comparing the primary struc-

ture of two biopolymers such as amino acid sequences or nucleic
acid sequences. Typically, two sequences are compared as a whole
to find different types of homologies between them. Another

important question is to find all regions in a "long" sequence

(or in a data base of sequences) that are homologous to a given
"short" sequence. Both problems can be solved using the dynamic
programming method developed in different variations e.g. in
(1,2); Sankoff and Kruskal (3) give a good overview of the

algorithms in this class.
Here we consider a related problem of comparing an amino

acid sequence to a nucleic acid sequence. Since the translation
from nucleic acids to amino acids is not one-to-one, it is clear

that the methods for comparing amino acid sequences or nucleic
acid sequences do not work without modifications.

The ANSEARCH program is available for non-commercial reseach use
by paying postage and handling; re-distribution is prohibited.
For further information contact Hannu Peltola.

©) IRL Press Limited, Oxford, England. 99

Nucleic Acids Research

More specifically, this paper discusses methods for the

search of amino acid patterns in nucleic acid sequences. All

methods are modifications of the dynamic programming algorithm

for sequence comparison. The simplest of the methods has been

implemented as a FORTRAN 77 program.

SEARCH ALGORITEMS
The problem

Let a and b be two sequences such that a is an amino acid

sequence and b is a nucleic acid sequence.

Sequence a is represented as a character string

a(l)a(2)...a(n) where each a(i) can be an amino acid (denoted as

A,C,D,E,F,G,H,I,K,L,M,N,P,Q,R,S,T,V,W,Y) or a stop codon (de-

noted as *). Moreover, a(i) can be letter X denoting an unknown

amino acid. The possibility of using X is convenient when only

partial information is available on sequence a. This is the case

e.g. when a is produced by radio sequencing (4,5). Then, in

fact, X is not completely unknown since X must be different from

all the explicitly known amino acids of a. For example, if a =

AXCX has been produced by radio sequencing it is known that the

second and the fourth element of a are any amino acids different

from A and C (and also different from all the other already

sequenced amino acids not present in a).

Sequence b is represented as a character string
b(l)b(2)...b(m) where each b(i) can be a nucleic acid (denoted

T/U,A,G,C).
The search problem we want to solve is to find in sequence

b all regions that, when translated to amino acids, are

sufficiently homologous to the amino acid sequence a. Both

sequences can contain small sequencing errors such as short

insertions, deletions, and changes.

The homologies between such a and b can be found by

dynamic programming algorithms. The idea behind such methods is

that we fix a set of basic transformation operations on

sequences (typical operations are deletion, insertion, and

change of a character). Each operation has an associated penalty

value. Dynamic programming algorithms find regions in b that can

be transformed into a with minimal sum penalty by successively

100

Nucleic Acids Research

using basic operations (2). The translation of codons to amino
acids adds a constraint which has to be taken into account in
the detailed formulation of the dynamic programming algorithm.

There are two approaches to the problem created by the

codon-to-amino-acid translation. The first is to backtranslate
sequence a into nucleic acids. This means reducing the problem

to the comparison between nucleic acids. The symmetric possi-
bility is, of course, to reduce the problem to a comparison
between amino acids by translating sequence b into amino acids.

Reduction to a comparison between nucleic acid sequences

A brute-force solution would be to backtranslate a in all

possible ways into a nucleic acid sequence and compare each of

the sequences against b. However, the resulting algorithm is
immediately seen intolerably slow. This is because up to six
codons may translate into the same amino acid which means that

already relatively short amino acid sequences backtranslate in
enormously many different ways.

Fortunately, a more efficient solution is possible. The

idea of this algorithm is to avoid explicit backtranslation into
separate sequences by comparing all alternatives in parallel.

For example, consider an amino acid sequence a = LVM.

Since L (leusine) has 6, V (valine) has 4, and M (methionine)
has 1 codons, this sequence can be backtranslated in 6*4*1 = 24

different ways. A compact graphical representation of the six
codons of L, namely TTA, TTG, CTT, CTC, TTA, CTG, is as follows:

T T A

C T T

C

A

G

The similar network for V is as follows:
G ~T- T

A

G

101

Nucleic Acids Research

and for M as follows: A T- G

Combining the three networks by connecting all rigthmost

nucleotides of a network to all leftmost nucleotides of the next

network gives a network for LVM:

T T A G T T A T G

C T T A

G

Every left-to-right path in the network, such as the (lowermost)

path CTGGTGATG, gives a backtranslation of LVM.

Obviously, the backtranslations of any amino acid sequence

have this kind of network representation. Also the backtrans-

lations of the symbol X can be represented in this way. So the

problem of comparing a to b reduces to the problem of comparing

the network representation of a to b. A generalization of the

dynamic programming method by (2) to handle this situation is

straightforward in principle, as described in a general setting

in (6); the adaptation of the method for the needs of the

present application is simple and we do not give details.

The resulting algorithm is reasonably efficient: The

number of computational steps is propotional to k.m where k is

the sum of the number of the backtranslations of the individual

elements in a (for LVM we get k = 6+4+1 = 11) and m is the

length of b. This is because the algorithm works by evaluating a

k-m matrix. If an upper bound for the acceptable total penalty
is given a priori, evaluation of some matrix elements can be

skipped. This trick, which is based on techniques from (7,8)

still improves the efficiency.

Maybe the most important feature of the delineated algor-

ithm is its mathematical soundness: The search of the occurences

of the pattern a in sequence b is based solely on minimizing the

total penalty of transforming a possible occurence into a

nucleic acid sequence which is a backtranslation of a. On the

negative side, the programming of the algorithm (which we have

not done) seems rather tedious.

102

Nucleic Acids Research

Reduction to a comparison between amino acid sequences

A simple solution would be to first translate sequence b
into amino acids in the three reading frames in both directions.
Then the six resulting amino acid sequences are searched for the
pattern a. This, however, ignores that b can contain errors such
as nucleotide insertions and deletions which may mix the reading
frames. To cope with this, more flexible changing of the reading
frame ought to be possible during sequence comparison. Again,
this can be achieved by a suitable form of dynamic programming.
We have used the following algorithm.
Algorithm 1.
To find all occurences of pattern a = a(l)a(2)...a(n) in
sequence b = b(l)b(2)...b(n), an (n+l).(m+3) matrix E must be

evaluated. The rows of matrix E are indexed as 0,l,...,n and the

columns are indexed as -2,-l,,l, ...,m. The matrix is
initialized as follows:

E(O,j) = oo for j = -2, -1

E(O,j) = 0 for j = 0, ..., m

E(i,j) = oo for i = 1, ..., n and j = -2,-l,0,l,2.
The remaining elements of E are evaluated using the recurrence
equation

E(i-l,j-l) + del 2
E(i-l,j-2) + del 1

E(i,j) = d(a(i), aa(j)) + min E(i-l,j-3)
E(i-l,j-4) + del1

E(i-l,j-5) + del2
where

aa(j) denotes the amino acid that corresponds to the codon
b(j-2)b(j-l)b(j);

d(a(i), aa(j)) denotes the penalty of matching amino acids
a(i) and aa(j);

del 1 denotes the penalty of one missing nucleotide in
sequence b before codon b(j-2)b(j-l)b(j). Therefore
the reading frame has been moved for one position to
the left;

del1 denotes the penalty of one extra nucleotide in
sequence b before codon b(j-2)b(j-l)b(j). Therefore

103

Nucleic Acids Research

the reading frame has been moved for one position to

the right;

del 2 (del2) is like del_1 (del1) but now there are two

missing (extra) nucleotides and the reading frame

has been moved for two positions to the left (to the

right).
Using the recurrence equation above, matrix E can be evaluated,

say, column by column.

The interpretation of the evaluated matrix E is standard:

The last row of E (=row n) gives the total penalties of matching

a against different parts of b. In fact, E(n,j) is the total

penalty of matching a against the part b(i)b(i+l)...b(j) of b

where i is such that there is in E a "minimizing path" from

E(O,i-l) to E(n,j).
To select the cases where the homology between a and the

correspondirg b(i)b(i+l)...b(j) is good enough the algorithm
uses a threshold value for the total penalty. Whenever E(n,j) is

found to be equal to or less than the threshold value, the

algorithm outputs the corresponding (translated)

b(i)b(i+l)...b(j) as well as the alignment of a against

b(i)b(i+l)...b(j), as suggested by the minimizing path.

The number of computing steps of Algorithm 1 is pro-

portional to n*m. The tricks from (7,8) can again be used in

improving the efficiency.
Proper choice of the penalty and the threshold values in

Algorithm 1 is crucial, of course. In our implementation the

following values have worked quite well:

0 if a(i) = aa(j) or a(i) = X

(or has been produced by radio

d(a(i), aa(j)) = sequencing and a(i) = X and

aa(j) does not appear in a)
3 otherwise (i.e., a(i) and aa(j)

are different),

del-l 2,
del2 4

dell 21
del2 4

Threshold value for total penalty = n.

104

Nucleic Acids Research

Using more sophisticated penalty functions in Algorithm 1

is also possible. In particular, the penalties d(a(i), aa(j)) of

comparing amino acids could be based on the PAM250 matrix of

(9).
Algorithm 1 allows insertion and deletion of one or two

nucleotides between two codons of b when searching for regions

that translate to a. This is rather restrictive but gives a

reasonably fast algorithm. More homologies can be found by using

in Algorithm 1 the recurrence equation

E(i-l,j-l) + e(a(i), b(j))
E(i-l,j-2) + e(a(i), b(j-l)b(j))

E(i,j) = min E(i-l,j-3) + e(a(i), b(j-2)b(j-l)b(j))

E(i-l,j-4) + e(a(i), b(j-3)...b(j))
E(i-l,j-5) + e(a(i), b(j-4)...b(j))

Here e(a(i), w), where w is a nucleotide sequence of length

between 1 and 5, is the penalty of matching amino acid a(i)

against w. A natural method to calculate these penalties is to

determine the minimum base change distance of w from each codon

for a(i), and take the minimum of the distances. To improve

efficiency, the penalties should be precomputed and stored in a

table.

This algorithm always matches an amino acid against a

sequence of nucleotides of length from 1 to 5, which means that

at most two insertions of deletions are allowed in b per a

matching amino acid in a. The retriction to two nucleotides is

consistent with our assumption that a and b can contain only

small sequencing errors. If one wants to allow arbitrary long

blocks of deletions and insertions when searching for

homologies, for example the following form of the recurrence

equation can be used:

E(i-l, j) + e(a(i), 0)
E(i-l,j-l) + e(a(i), b(j))

E(i,j) = min E(i-1l,j-2) + e(a(i), b(j-l)b(j))

E(i-l,j-3) + e(a(i), b(j-2)b(j-l)b(j))
E(i ,j-l) + e(0 , b(j)).

where 0 denotes the empty sequence, and penalty function e is as

earlier, with obvious extensions.

105

Nucleic Acids Research

THE PROGRAM
Algorithm 1 has been implemented as an interactive

program, called ANSEARCH, using standard FORTRAN 77 language.

The penalty values are as described after Algorithm 1 in the

previous section.
The program operates on a file of nucleotide sequences

from which sequence b is retrieved using an identifier given by

the user as the retrieval key. The file must follow the format

used in the EMBL Nucleotide Sequence Data Library.
The program then asks the user for sequence a, to be given

from the computer terminal. Also the symbol X may be used in

partially known sequences. Finally, the program asks for the
threshold value of the total penalty. A default value can also

be used.

Then the search algorithm is performed and all regions of

b that approximately translate to a, within the limits given by
the threshold value, are shown to the user terminal.

The maximum length of sequence a in the current version of

the program is 50. Since b is used through buffers, its length
is not limited.

DISCUSSION

Algorithm 1 as well as program ANSEARCH were originally
designed for locating genes during a sequencing project in newly
sequenced nucleotide sequences. If one wants to make sure that

rigth gene is cloned, and the gene product is (partially) known,

a possibility is to determine the nucleotide sequence and check
with program ANSEARCH that the sequence can code the known amino
acid pattern. Also, program ANSEARCH is useful in locating DNA
sequencing errors on regions where the amino acid sequence is
known by other means. Currently the program is tused in searching
for nucleotide sequences that code certain intresting
pentapeptides.

Algorithm 1 is almost symmetric with respect to a and b.
To search in a for all regions that are homologous to the

translation of b, one has only to interchange 0 and oo in the

initialization of E. The total penalty is now read from the last
column (instead of the last row) of E.

106

Nucleic Acids Research

ACKNOWLEDGEMENTS

The ANSEARCH program was written by Markku Korhonen. The

comments by Ale Narvanen are gratefully acknowledged. This work
was supported by a grant from Foundation for Biotechnical and

Industrial Fermation Research.

REFERENCES

1. Needleman, S.B. and Wunsch, C.D. (1970) J. Mol. Biol. 48,
443-453.

2. Sellers, P.H. (1980) J. Algor. 1, 359-373.
3. Sankoff, D. and Kruskal J.B. (Ed.) (1983) Time Warps, String

Edits, and Macromolecules: The Theory and Practice of
Sequence Comparison, Addison-Wesley, Reading, Mass.

4. Kalkkinen, N., Laaksonen, M., Sbderlund, H. and Jornvall, H.
(1981) Virology 113, 188-195.

5. Jornvall, H., Kalkkinen, N., Luka, J, Kaiser, R., Carlquist,
M. and von Bahr-Lindstrom, H. (1983) in Modern Methods in
Protein Chemistry, Review articles, Ed. H. Tschesche,
(Nordic Biochemical Society Meeting, September 27-29, 1982)
Walter de Gruyter, New York.

6. Kruskal J.B. and Sankoff, D. (1983), pp. 265-310 in (3).
7. Ukkonen, E. (1986) Information and Control, to appear.
8. Peltola, H., Soderlund, H. and Ukkonen, E. (1984) Nucl.

Acids Res. 12, 307-321.
9. Schwartz, R.M. and Dayhoff, M.O. (1978) in Atlas of Protein

Sequence and Structure, Dayhoff, M.O. Ed., Vol. 5 suppl. 3,
p.354, National Biomedical Research Foundation, Washington.

107

