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Abstract: Processing of unattended threat-related stimuli, such as fearful faces, has been
previously examined using group functional magnetic resonance (fMRI) approaches.
However, the identification of features of brain activity containing sufficient information
to decode, or "brain-read", unattended (implicit) fear perception remains an active
research goal. Here we test the hypothesis that patterns of large-scale functional
connectivity (FC) decode the emotional expression of implicitly perceived faces within
single individuals using training data from separate subjects. fMRI and a blocked
design were used to acquire BOLD signals during implicit (task-unrelated) presentation
of fearful and neutral faces.  A pattern classifier (linear kernel Support Vector Machine,
or SVM) with linear filter feature selection used pair-wise FC as features to predict the
emotional expression of implicitly presented faces.  We plotted classification accuracy
vs. number of top N selected features and observed that significantly higher than
chance accuracies (between 90-100%) were achieved with 15-40 features.  During
fearful face presentation, the most informative and positively modulated FC was
between angular gyrus and hippocampus, while the greatest overall contributing region
was the thalamus, with positively modulated connections to bilateral middle temporal
gyrus and insula. Other FCs that predicted fear included superior-occipital and parietal
regions, cerebellum and prefrontal cortex.  By comparison, patterns of spatial activity
(as opposed to interactivity) were relatively uninformative in decoding implicit fear.
These findings indicate that whole-brain patterns of interactivity are a sensitive and
informative signature of unattended fearful emotion processing.  At the same time, we
demonstrate and propose a sensitive and exploratory approach for the identification of
large-scale, condition-dependent FC. In contrast to model-based, group approaches,
the current approach does not discount the multivariate, joint responses of multiple
functional connections and is not hampered by signal loss and the need for multiple
comparisons correction.
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Dear editors of PLOS Computational Biology, 
 
Thank you for the helpful reviews and comments on our recent resubmission entitled “Decoding 
unattended fearful faces with whole-brain correlations: an approach to identify condition-
dependent large-scale functional connectivity”. We have further addressed the reviewers’ 
comments and have revised the manuscript accordingly. Revisions and additions are now included 
in bold. We appreciate your review and reconsideration of our updated manuscript. 
 
Best, 
 
 
Spiro Pantazatos 
PhD Candidate 
NRSA F31 Predoctoral Fellow 
fMRI Research Lab 
Columbia University 

Joy Hirsch, PhD 
Professor, Director 
fMRI Research Lab 
Columbia University 

 
 
 
Reviewer #1: The authors added several analyses in response to reviewer comments that 
improved the article. 
However, one result from the new analyses is slightly puzzling. When using functionally 
defined ROIs the accuracy dropped off significantly compared to anatomically defined 
ROIs? The choice of regions should not make that great a difference? Are the ROIs of the 
same size? What could potentially explain these differences? 

 
Pg 23 - We observed that using whole-brain, anatomically defined ROIs to 
define nodes for whole-brain FC estimation yielded much higher classification 
rates than using nodes that were functionally defined (either from other meta-
analyses or coordinates defined from GLM analysis of these same data).  This 
was not too surprising, as these functionally defined ROIs were smaller (6 mm 
radius spheres centered around peak F-value coordinates from the contrast of 
F > N obtained from the GLM vs. atlas-based masks), and hence provided 
considerably less coverage of the brain. In addition, the GLM framework relies 
on multiple assumptions (i.e. model/shape of hemodynamic response 
function, effects add linearly, etc.) (Monti, 2011) and regions that show 
activation to a stimulus (i.e. sustained increase in signal amplitude during the 
duration of a block) may not necessarily exhibit differential functional 
connectivity and vice versa.  These observations further the notion that there 
exists substantial information in whole-brain large-scale functional 
connectivity patterns, the nodes of which may not be captured or revealed 
adequately through standard GLM approaches.  
 
 

Reviewer #2: This new version of the manuscript has certainly improved in terms of clarity 
of exposition. However, I am still concerned about the implications of certain procedures in 
the methodology. I explain these in the following points. 

Response to Reviewers



 
1)      The unbiased feature selection method applied to functional connectivity data 
consisted on the application of two-sample t-tests to the generated correlation coefficients 
between the nodes extracted by means of SVD across the 2 analyzed stimulus types, fearful 
(F) and neutral (N). This procedure was applied to data from all subjects but the one left at 
a specific round of LTOCV. Since one of the main motivations of the manuscript is to 
compare how informative functional connectivity data is compared to activity data, it 
would seem fair to apply the same feature selection procedure to beta estimates of 
activation (in fact, it looks like a more reasonable criterion if compared with the applied F-
test). 
 
In response to the reviewer, we have now redone the classification analysis with beta 
estimates using the same unbiased feature selection approach that was used for the 
functional connectivity data, and have redone Figure 5 to reflect this updated analysis. To 
summarize our findings, the activation-based method performs much worse than the 
functional connectivity-based analysis. We thank the reviewer for raising this important 
point. 
 

Pg –16 In order to make feature-selection/LTOCV and SVM learning more 
computationally tractable, preprocessed functional data were resized from 2x2x2 
mm voxel resolution to 4x4x4 mm resolution, and subject-specific GLM models were 
re-estimated, resulting in a reduction of total feature space per example from 
~189,500 betas to ~23,500. Feature selection, LTOCV and SVM learning proceeded 
exactly as above for FC data. We observed accuracies of 66%-76% with ~500 to 2600 
features, with peak accuracy 76% (p = 0.0044, uncorrected) at ~1900 features 
(Figure 5A).  The most informative voxels encompassed many distributed regions 
that included dorsolateral prefrontal/opercular cortex, fusiform gyrus, lateral 
occipital cortex, superior temporal gyrus, anterior cingulate, amygdala, 
parahippocampal gyrus, ventrolateral prefrontal cortex, pulvinar, precuneus, 
cerebellum, inferior parietal lobe and insula (Figure 5B).  Although significantly 
above chance, and despite the involvement of many more regions, maximum 
accuracy using betas was still significantly less than the maximum accuracy achieved 
with FC (76% < 100%, p=5.37x10-7). 

We performed additional classifications using betas derived from the original, 
smaller voxel-sizes and with the addition of an initial (positively biased) feature 
selection step over the whole-dataset for the same issues of technicality stated above. 
This also served to estimate an upper bound on the expected accuracy when using 
beta-values: if maximum accuracy achieved was still less than when using functional 
connectivity with unbiased feature selection, then we can more readily conclude that 
functional connectivity features are more “informative” than beta estimates (when 
using the Canonical Hemodynamic Response Function (HRF) to model activation). For 
this analysis, the initial (biased) feature selection employed an F-test of the contrast 
F>N thresholded at p<0.01, cluster threshold=20, resulting in 4,226 total initial 
features. Feature selection/LTOCV and classification again proceeded as above across 
the range of 1 to 4000 features. In spite of initially biased feature selection, F vs. N 
classification reached 92% maximum accuracy (data not shown). 
 



Pg 22 - We observed that the peak classification rate when using betas (76%, ~1900 
features) was significantly lower than that achieved using FC (100%, ~25 features).  
Even with an additional, initial feature-selection based on the entire data set which 
positively biased results, peak decoding accuracies when using ~4,000 beta values 
(92%) were lower than those reached when using only ~25 correlations as features 
and unbiased feature selection (100%). 
 
Fig. 5. Classification results using beta estimates as features. (A) Feature selection, 
cross-validation and SVM learning were performed exactly the same as for FC, but 
over the range of 1 to 4000 ranked features (voxels). Accuracies for F vs. N 
classification reached 66-76% with ~500-2500 features, with maximum accuracy 
(76%, p = 0.0044, uncorrected) at ~1,900 features. (B) The most informative voxels 
with positive SVM weights (F > N, yellow) included fusiform gyrus (-28,-20,-12), 
cerebellum (-28, -20), amygdala (-20), insula (-12), orbital and ventrolateral 
prefrontal cortex (-20, -12, -4), midbrain (-12), parahippocampal gyrus (-12), middle 
temporal gyrus and superior temporal sulcus (-12,-4,4), thalamus/pulvinar (4), 
dorsolateral prefrontal/opercular cortex (12,20,28), dorsomedial prefrontal cortex 
(20,28), and superior occipital cortex (20,28) and inferior parietal lobe (36). 
Informative voxels with negative SVM weights (N > F, blue) included temporal-
occipital cortex (-20), subgenual anterior cingulate (-12,-4), striatum (-4,4), lingual 
gyrus (4,12), precuneus (20) and dorsolateral prefrontal cortex (28,36). (B). Brain 
images are displayed using Neurological convention (i.e. L=R), and top left number in 
each panel represents the MNI coordinate (z) of depicted axial slice. 

 
Furthermore we now include statistical tests to formally compare the information content of 
pair-wise correlations to beta-estimates.  

 
Pg –14 For assessing the significance of the differences between decoding 
results (i.e. FC as features vs. beta estimates) we used the Accurate Confidence 
Intervals MATLAB toolbox for assessing whether the parameter p (probability 
of correct prediction)  from two independent binomial distributions was 
significantly different 
(http://www.mathworks.com/matlabcentral/fileexchange/3031-accurate-
confidence-intervals). Briefly, these methods search for confidence intervals 
using an integration of the Bayesian posterior with diffuse priors to measure 
the confidence level of the difference between two proportions (Ross 2003). 
We used the code prop−diff(x1,n1,x2,n2,delta), (available from the above 
website) returning Pr(p1−p2>δ), where x1, n1, x2, n2, are number of correct 
responses and total predictions in two distributions being compared, and 
delta (zero in this case) is the null hypothesis difference between the 
probabilities.  

 
2)      It is unclear to me why the node extraction procedure included data from fMRI time 
points of the 4 experimental stimulus types (MF, MN, F and N) if the information of interest 
(as stated by the authors) is only related to the unmasked conditions F and N. Including 
information from the other 2 conditions in the SVD could convey misleading eigenvariates 



that could be defined primarily by the information retrieved from the masked stimuli. 
 
We now include this as a potential limitation and further motive why we extracted data from 
the whole time series. We thank the reviewer for raising this important point. 

 
Pg – 10,11 Interestingly, when extracting only one eigenvariate per region, 
maximum accuracy did not surpass 46% (data not shown). This is possibly due to 
the fact that larger, atlas-based regions encompassed other functional subregions 
which were not included in the analysis. Another possible reason is that for many 
regions, the 1st eigenvariate may reflect artifact global or mean grey matter signal 
(while white matter and csf signal were regressed out from nodes’ time-series, 
global and mean grey matter signals were not), or it may reflect variation caused 
by other conditions/blocks within the run that were not considered in the 
current classification analyses (see paradigm task description  and methods 
above), or a combination of all the above. Therefore we extracted two eigenvariates 
from each region. 
 
Pg –10 For each atlas-based region, we opted to apply SVD over the entire 
time-series from each subject and then segment and concatenate the 
eigenvariates according to the conditions/comparisons of interest (rather 
than segment and concatenate all the masks’ voxels first and then apply SVD) 
in order to maximize the total number of observations (time points) per 
region and also to avoid potentially introducing any artifact and unnatural 
variation caused by the splicing together of signal from disparate time points, 
which could possibly bias the SVD results. However, a potential disadvantage 
of this approach is that important sub-regions and associated eigenvariates 
within a particular atlas-based region could be missed due to variation in 
other conditions/blocks within the run that are not considered in the current 
work. This is an additional motivation to retain the top two eigenvariates from 
each atlas-based region, as opposed to just one. 
 

Other points: 
 
-       It would be better to avoid an explanation of how an RBF-SVM did not give good 
results when provided with an arbitrary parameter sigma. In order for a RBF kernel to 
work properly, sigma should be selected by means of parameter validation, so it makes 
sense that it did not work for sigma=2. 
 
Agreed, we have removed the above explanation. 
 
-       In Materials and Methods, Subjects subsection. The term "psychopathology" is 
misspelled. 
 
Thank you for point this out, we have correctly spelled the term. 
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Abstract 

 
Processing of unattended threat-related stimuli, such as fearful faces, has been previously 

examined using group functional magnetic resonance (fMRI) approaches.  However, the 

identification of features of brain activity containing sufficient information to decode, or “brain-

read”, unattended (implicit) fear perception remains an active research goal. Here we test the 

hypothesis that patterns of large-scale functional connectivity (FC) decode the emotional 

expression of implicitly perceived faces within single individuals using training data from 

separate subjects. fMRI and a blocked design were used to acquire BOLD signals during 

implicit (task-unrelated) presentation of fearful and neutral faces.  A pattern classifier (linear 

kernel Support Vector Machine, or SVM) with linear filter feature selection used pair-wise FC as 

features to predict the emotional expression of implicitly presented faces.  We plotted 

classification accuracy vs. number of top N selected features and observed that significantly 

higher than chance accuracies (between 90-100%) were achieved with 15-40 features.  During 

fearful face presentation, the most informative and positively modulated FC was between 

angular gyrus and hippocampus, while the greatest overall contributing region was the 

thalamus, with positively modulated connections to bilateral middle temporal gyrus and insula. 

Other FCs that predicted fear included superior-occipital and parietal regions, cerebellum and 

prefrontal cortex.  By comparison, patterns of spatial activity (as opposed to interactivity) were 

relatively uninformative in decoding implicit fear.  These findings indicate that whole-brain 

patterns of interactivity are a sensitive and informative signature of unattended fearful emotion 

processing.  At the same time, we demonstrate and propose a sensitive and exploratory 

approach for the identification of large-scale, condition-dependent FC. In contrast to model-

based, group approaches, the current approach does not discount the multivariate, joint 

responses of multiple functional connections and is not hampered by signal loss and the need 

for multiple comparisons correction. 
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Key words: functional networks, threat detection, decoding, facial expression, brain-reading 

 

Author Summary 

Brain activity is increasingly characterized by patterns of pair-wise correlations (large-scale 

functional connectivity) across the whole brain obtained from Blood Oxygen Level Dependent 

(BOLD) functional magnetic resonance imaging (fMRI).  Typically this is done during resting 

states (i.e. no presented stimulus) to differentiate subjects based on individual variation or 

diagnosis. In the current work, we identify such patterns that are a sensitive signature of 

unattended processing of threat-related stimuli, allowing one to “brain-read” whether an 

individual was presented with a neutral or fearful face while they attended to non-expression-

related stimulus features.  These results further the understanding of the neural mechanisms 

sub-serving threat-detection and facial affect processing in healthy subjects, and may also help 

further our understanding of various disorders, such as anxiety and autism, which exhibit 

anomalies in these processes.  At the same time, we propose an exploratory and sensitive 

approach for the identification of condition-dependent, large-scale functional connectivity. This 

approach is not based on statistical inference on functional connections averaged across 

subjects and contrasted between two conditions, but rather based on the informative 

contribution of each functional connection when attempting to predict between two conditions, 

using machine-learning based multivariate pattern analysis on training data from separate 

subjects.  
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Introduction 

Faces with a fearful expression are thought to signal the presence of a significant, yet 

undetermined source of danger within the environment, or 'ambiguous threat' [1].  Evidence 

from fMRI and evoked potentials (ERPs) suggest that fearful face processing can strongly affect 

brain systems responsible for face recognition and memory during implicit (consciously 

perceived but unattended) presentation of these stimuli [2, 3]. Group-based fMRI studies have 

shown that the perception and processing of facial emotional expression engages multiple brain 

regions including the fusiform gyrus, superior temporal sulcus, thalamus, as well as affect-

processing regions such as amygdala, insula, anterior cingulate cortex among others [4-7].  

However, to the authors’ knowledge, no study to date has identified features of brain activity that 

contain sufficient information to reliably decode, or “brain-read”, the threat-related emotional 

expression of unattended (implicitly perceived) faces within individual subjects.  The 

identification of such features, though less well quantified as in group model-based studies, 

would have a greater capacity for representing distinctions between different cognitive-

emotional perceptual states [8], and hence could contribute in advancing our understanding of 

the neural mechanisms that underlie threat detection and facial emotion processing. 

Most group fMRI approaches that have studied the neural correlates of emotional face 

perception have relied on univariate approaches [9-11] which identify regions correlated with a 

regressor-of-interest, but ignores any interactions with other regions.  Bivariate approaches 

have been applied, but assess the interactivity (functional connectivity) of only one seed region 

(usually amygdala) with the rest of the brain [12, 13].  Even though several notable studies have 

taken a multivariate approach in assessing the effective connectivity amongst multiple brain 

regions during emotional face processing [14-16], a limited number of nodes were included in 

the networks and they were selected based on apriori anatomical knowledge or on their 

activation in conventional, General Linear Model (GLM)-based mass univariate analyses.  

However, univariate GLM approaches make strong assumptions about the hemodynamic 
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response (i.e. sustained periods of activation or deactivation relative to baseline), while 

functional connectivity offers a complementary and more data-driven and exploratory measure 

that makes use of temporal correlations to estimate functional connectivity [17]. 

There has been a recent surge of interest in examining the large-scale (i.e. pair-wise 

connectivity throughout the whole-brain) functional network architecture of the brain as a 

function of various cognitive processes or individual variation [18]. This is often done by first 

defining a set of functional "nodes" based on spatial ROIs and then conducting a connectivity 

analysis between the nodes based on their FMRI timeseries.  Large-scale functional 

connectivity patterns have been successful in predicting age [19] as well as subject-driven 

mental states such as memory retrieval, silent-singing vs. mental arithmetic [20] and watching 

movies vs. rest [21].  It remains to be determined however, whether whole-brain connectivity 

can be used to decode very similar stimuli that differ by only one or a few subtle characteristics, 

such as the emotional expression of an unattended face.  If so, then functional connections that 

discriminate between the two conditions can be interpreted as being uniquely related to the 

parameter of interest that varies across both conditions.  

Although multivariate pattern analyses are more sensitive than group, model-based 

approaches, one disadvantage is decreased interpretability and quantification of the precise 

relationship amongst features related to a certain condition [8].  However, since this approach 

exploits the information inherent in the joint responses of many functional connections, an 

advantage is that pattern classification of similar conditions coupled with feature selection and 

identification can be used as a means to identify condition-dependent, large-scale functional 

connectivity, without the need to correct for tens of thousands of multiple comparisons.  This 

approach can be used for hypothesis generation to identify groups of functional connections 

associated with a condition, which can then serve as connections and regions of interest for 

more rigorous and mechanistically revealing approaches such as effective connectivity [22]. 
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Here we estimate the large-scale functional networks of implicit fear processing using a 

blocked design and Blood Oxygen Level Dependent (BOLD) image acquisition, during which 

subjects were instructed to identify the color of pseudo-colored fearful and neutral faces. We 

applied atlas-based parcellation to derive several hundred nodes throughout the whole-brain 

and computed thousands of pair-wise correlations (40 total time points, or 80s worth of fMRI 

data) during each of two conditions: implicit processing of fearful and neutral faces.  We then 

employed multivariate pattern analyses in conjunction with linear filter feature selection to 

identify functional connections whose pattern could distinguish between implicit processing of 

fearful and neutral faces within individual subjects, using training data from separate subjects. 

We plotted classification accuracy vs. number of included features to approximate the minimum 

number of informative features, and then identified these features (functional connections) on a 

neuroanatomical display. See Figure 2 for an outline of the analysis scheme.  

Our primary objective was to test the hypothesis that condition-specific, functional 

connectivity over the whole-brain (here Pearson correlation using 40 time points of fMRI data 

per example) contain enough information to discriminate between implicitly presented fearful 

and neutral faces, and to identify the functional connections that are most informative in this 

decoding task.  A secondary objective was to compare the decoding accuracies achieved when 

using interactivity (pair-wise correlations) vs. activity (i.e. beta estimates from SPM maps).  We 

show that a small subset of connections estimated across the whole-brain can predict, or “brain-

read”, implicitly presented fearful faces with high peak accuracies using training and testing data 

from separate subjects.  We propose that this is a valuable, exploratory approach to estimate 

condition-specific, large-scale functional connectivity and demonstrate that whole-brain patterns 

of interactivity are a sensitive and informative signature of cognitive-emotional perceptual states. 

 
   
 

Materials and Methods  
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Ethics Statement 

All procedures and tasks were reviewed for ethical concerns and protection of human subjects 

by appropriate local IRB boards prior to subject recruitment and data collection. The procedures 

described in this study of healthy adults have been approved by the Columbia University 

Morningside IRB (#IRB-AAAA3690, PI: Joy Hirsch) and IRB (#IRB5290, PI: Myrna M. 

Weissman) 

 

Subjects 

A total of 38 (19 female) healthy volunteers (mean age = 29, SD = 6.9) with emmetropic or 

corrected-to-emmetropic vision participated in the study in accordance with institutional 

guidelines for research with human subjects. All subjects were screened to be free of severe 

psychopathology including Bipolar Disorder and Psychotic Disorders.  

 

Stimulus Presentation Paradigm 

Subjects performed a previously described task (Etkin, Klemenhagen et al. 2004) which 

consists of color identification of fearful and neutral faces (F and N respectively). Although 

backwardly masked (subliminal) fearful and neutral faces were also presented, here we discuss 

results based on the unmasked (supraliminal) conditions.  Results based on comparisons of 

masked conditions are presented elsewhere (manuscript in preparation). Stimuli: Black and 

white pictures of male and female faces showing fearful and neutral facial expressions were 

chosen from a standardized series developed by Ekman and Friesen (1976). Faces were 

cropped into an elliptical shape that eliminated background, hair, and jewelry cues and were 

oriented to maximize inter-stimulus alignment of eyes and mouths. Faces were then artificially 

colorized (red, yellow, or blue) and equalized for luminosity. For the training task, only neutral 

expression faces were used from an unrelated set available in the lab. These faces were also 

cropped and colorized as above.  

http://www.sciencedirect.com.arugula.cc.columbia.edu:2048/science?_ob=ArticleURL&_udi=B6WSS-4F1HGT9-K&_user=18704&_coverDate=12%2F16%2F2004&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000002018&_version=1&_urlVersion=0&_userid=18704&md5=8b214e07fd9327c32607a4506692e040#bib14
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Behavioral task: Each stimulus presentation involves a rapid (200 ms) fixation to cue subjects to 

fixate at the center of the screen, followed by a 400 ms blank screen and 200 ms of face 

presentation. Subjects have 1200 ms to respond with a key press indicating the color of the 

face. Behavioral responses and reaction times were recorded.  Unmasked stimuli consist of 200 

ms of a fearful or neutral expression face, while backwardly masked stimuli consist of 33 ms of 

a fearful or neutral face, followed by 167 ms of a neutral face mask belonging to a different 

individual, but of the same color and gender (see Figure 1). Each epoch consists of ten trials of 

the same stimulus type, but randomized with respect to gender and color. The functional run 

has 16 epochs (four for each stimulus type) that are randomized for stimulus type. To avoid 

stimulus order effects, we used two different counterbalanced run orders. Stimuli were 

presented using Presentation software (Neurobehavioral Systems, http://nbs.neuro-bs.com), 

and were triggered by the first radio frequency pulse for the functional run. The stimuli were 

displayed on VisuaStim XGA LCD screen goggles (Resonance Technology, Northridge, CA). 

The screen resolution was 800X600, with a refresh rate of 60 Hz.  Prior to the functional run, 

subjects were trained in the color identification task using unrelated neutral face stimuli that 

were cropped, colorized, and presented in the same manner as the nonmasked neutral faces 

described above in order to avoid any learning effects during the functional run.  After the 

functional run, subjects were shown all of the stimuli again, alerted to the presence of fearful 

faces, and asked to indicate whether they had seen fearful faces on masked epochs.   

 

fMRI Acquisition and Analyses 

fMRI Data Acquisition: Functional data were acquired on a 1.5 Tesla GE Signa MRI scanner, 

using a gradient-echo, T2*-weighted echoplanar imaging (EPI) with blood oxygen level-

dependent (BOLD) contrast pulse sequence. Twenty-four contiguous axial slices were acquired 

along the AC-PC plane, with a 64 × 64 matrix and 20 cm field of view (voxel size 3.125 × 3.125 

http://www.sciencedirect.com.arugula.cc.columbia.edu:2048/science?_ob=RedirectURL&_method=externObjLink&_locator=url&_plusSign=%2B&_targetURL=http%253A%252F%252Fnbs.neuro-bs.com
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× 4 mm, TR = 2000, TE = 40, flip angle = 60).  Structural data were acquired using a 3D T1-

weighted spoiled gradient recalled (SPGR) pulse sequence with isomorphic voxels (1 × 1 × mm) 

in a 24 cm field of view (256 × 256 matrix, ~186 slices, TR 34 ms, TE 3 ms).  

 

GLM analysis: Functional data were preprocessed and processed in SPM8 (Wellcome 

Department of Imaging Neuroscience, London, UK). For preprocessing, the realigned T2*-

weighted volumes were slice-time corrected, spatially transformed and resampled to a 

standardized brain (Montreal Neurologic Institute, 2x2x2 mm
3 cube resolution) and smoothed 

with a 8-mm full-width half-maximum Gaussian kernel. 1st-level regressors were created by 

convolving the onset of each block (MF, MN, F and N) with the canonical HRF with duration of 

20 seconds.  Additional nuisance regressors included 6 motion parameters, white matter and 

csf signal, which were removed prior to time-series extraction. For the current work, the same 

GLM analysis served three purposes: 1) facilitate removal of nuisance effects from time series 

prior to FC estimation using structurally (atlas-based) and functionally defined ROIs, 2) produce 

beta-estimates of each condition for classification analysis of spatial activity patterns and 3) 

functionally define ROIs (nodes) prior to FC calculation (used for comparing results of structural 

vs. functional definition of nodes).   

 

Node definitions: Brain regions were parcellated according to bilateral versions of the Harvard-

Oxford Cortical and sub-cortical atlases and the AAL atlas (cerebellum) and were trimmed to 

ensure no overlap with each other and to ensure inclusion of only voxels shared by all subjects 

(Figure 3, left panel). For each subject, time-series across the whole run (283 TRs) were 

extracted using Singular Value Decomposition (SVD) and custom modifications to the Volumes-

of-Interest (VOI) code within SPM8 to retain the top 2 eigenvariates from each atlas-based 

region.  Briefly, the data matrix for each atlas-based region is defined as A, an n x p matrix, in 
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which the n rows represent the time points, and each p column represents a voxel within an 

atlas-based region. The SVD theorem states: 

Anxp= Unxn Snxp V
T

pxp,  

where UTU = Inxn and VTV = Ipxp  (i.e. U and V are orthogonal). The columns of U are the left 

singular vectors (eigenvariates, or summary time courses of the region), S (the same 

dimensions as A) has singular values, arranged in descending order, that are proportional to 

total variance of data matrix explained by its corresponding eigenvariate, and is diagonal, and 

VT has rows that are the right singular vectors (spatial eigenmaps, representing the loading of 

each voxel onto its corresponding eigenvariate). Here we retain the top two eigenvariates 

(nodes) from each region.  

   For each atlas-based region, we opted to apply SVD over the entire time-series 

from each subject and then segment and concatenate the eigenvariates according to the 

conditions/comparisons of interest (rather than segment and concatenate all the masks’ 

voxels first and then apply SVD) in order to maximize the total number of observations 

(time points) per region and also to avoid potentially introducing any artifact and 

unnatural variation caused by the splicing together of signal from disparate time points, 

which could possibly bias the SVD results. However, a potential disadvantage of this 

approach is that important sub-regions and associated eigenvariates within a particular 

atlas-based region could be missed due to variation in other conditions/blocks within the 

run that are not considered in the current work. This is an additional motivation to retain 

the top two eigenvariates from each atlas-based region, as opposed to just one. 

   The above step resulted in a total of 270 nodes with an associated time course (i.e. 

eigenvariates) and spatial eigenmaps from the 135 initial atlas-based regions. Thus, each atlas-

based region was comprised of two nodes.  Interestingly, when extracting only one 

eigenvariates per region, maximum accuracy did not surpass 46% (data not shown). This is 
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possibly due to the fact that larger, atlas-based regions encompassed other functional sub-

regions which were not included in the analysis.  Another possible reason is that for many 

regions, the 1st eigenvariate may reflect artifact global or mean grey matter signal (while white 

matter and csf signal were regressed out from nodes’ time-series, global and mean grey matter 

signals were not), or it may reflect variation caused by other conditions/blocks within the 

run that were not considered in the current classification analyses (see paradigm task 

description above), or a combination of all the above. Therefore we extracted two 

eigenvariates from each region. We note that this means it is likely that node 2 of a particular 

region shows functional connectivity that differentiates between conditions and node 1 of the 

same region has no differential connectivity. For clarity we therefore label each node using its 

Harvard-Oxford atlas label appended by either “_PC1” for the first eigenvariate and “_PC2” for 

the second. For display purposes, we calculated the MNI coordinates of the peak loading weight 

(locations averaged across subjects) for each eigenvariate from its associated eigenmap 

(Figure 3, right panel). Supplementary Table 1 lists these average MNI coordinates for each 

node. 

 

Functional connectivity networks for implicit fearful and neutral face processing: For each 

subject, functional connectivity matrices (i.e. where cell i,j contains the Pearson correlation 

between region i and region j) were generated for implicit fearful (F) and neutral (N) conditions.  

The above time-series were segmented and concatenated according to conditions of interest 

(40 total time points per condition, incorporating a lag of 2 or 3 s from the start of each block) 

before generating the correlation matrices.  Fisher’s R to Z transform was then applied to each 

correlation matrix.  Finally for the binary classification of interest (i.e. F vs. N), correlation 

matrices were demeaned with respect to the average between the two conditions in order to 

remove the effects of inter-subject variability. The lower diagonal of the above preprocessed 
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correlation matrices (38 subjects X 2 conditions total) were then used as input features to 

predict viewed stimuli in subsequent pattern recognition experiments.  

 

Differences in functional connectivity between implicit fearful and neutral face processing: We 

first tested for significant differences between the primary conditions of interest (i.e. F > N) while 

correcting for multiple comparisons (False Discovery Rate, FDR).  This yielded no significant 

results when multiple comparison correction was applied (FDR, p < 0.05 and 0.1).  This was not 

surprising, as multiple comparison correction was expected to be too conservative given the 

exceedingly high number of independent comparisons (36,315).   

 

Pattern analysis of large-scale functional connectivity to predict implicit fear perception: Support 

vector machines are pattern recognition methods that find functions of the data that facilitate 

classification [23]. During the training phase, an SVM finds the hyperplane that separates the 

examples in the input space according to a class label. The SVM classifier is trained by 

providing examples of the form <x,c>, where x represents a spatial pattern and c is the class 

label. In particular, x represents the fMRI data (pattern of correlation strengths) and c is the 

condition or group label (i.e. c = 1 for F and c = −1 for N). Once the decision function is 

determined from the training data, it can be used to predict the class label of new test examples. 

 For all binary classification tasks, we applied a linear kernel support vector machine 

(SVM) with a filtering feature selection based on t-test and leave-two-out cross validation 

(LTOCV).  There were 38 examples for each condition (2 from each subject, 76 total).  During 

each iteration of 38 rounds of LTOCV, both examples (1 from each class) from one subject were 

withheld from the dataset and 1) a 2-sample t-test was performed over the remaining training 

data (N=37 in each group) 2) the features were ranked by absolute t-score and the top N were 

selected 3) these selected features were then used to predict the class of the withheld test 
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examples during the classification stage.  The full feature set for each example consisted of 

36,315 correlations.   

If the classifier predicted all trials as positive or negative, the resulting accuracy would be 

50% since the number of examples are equal for each class.  We therefore report classification 

accuracy (number of true positives and negatives over all trials) vs. number of included features 

that have been ranked by their t-score.  We assessed the significance of decoding results by 

computing the frequency in which actual values surpassed those from null distributions derived 

by randomly permuting class labels based on the method proposed by [24], with the a slight 

modification to account for the dependence between pairs of examples from each subject. 

Briefly, to derive this null distribution, class labels within each pair conditions from each subject 

were randomly flipped with a probability of 0.5 over 2000 iterations for each number of included 

features.  P-values for the peak decoding accuracies (F vs. N: 100%, top 25 features) were also 

calculated with respect to classification results when shuffling labels 10,000 times, and then 

subjected to Bonferroni correction for the number of total Top N comparisons (in this case 20). 

For SVM learning and classification we used the Spider v1.71 Matlab toolbox 

(http://people.kyb.tuebingen.mpg.de/spider/) using all default parameters (i.e. linear kernel SVM, 

regularization parameter C=1.  Graphical neuro-anatomical connectivity maps of the top N 

features were displayed using Caret v5.61 software 

(http://brainvis.wustl.edu/wiki/index.php/Caret:About). We note that different features could be 

selected during the feature selection phase of each round of cross-validation.  Therefore in 

ranking the top 25 features, we first rank by total number of times that feature was included in 

each round of cross-validation, and then amongst these features, we sort by absolute value of 

the average SVM weight. 

Our intent is not to estimate the true accuracy of prediction given a completely new data 

set, but rather to test whether there exists information in the pattern of functional connections 

relevant to unattended emotion perception, and to approximate the optimal number of features 

http://brainvis.wustl.edu/wiki/index.php/Caret:About


14 

 

that containing this information. We note that our approach (plotting accuracy vs. number of top 

N features) is not biased, since for each number of top N features, and for each round of leave-

two-out cross validation, the top N features were selected from a training set that was 

completely independent from the testing set.  If there is a true signal present in the data, we 

expect, and in the current data in general observe, that there is an initial rise in accuracy as 

more informative features are added to the feature set, and a dip in accuracy as less informative 

features (i.e. noise) are added to the feature set.  Therefore in reporting classification results, 

we report the range of features at which accuracies first reach maximum accuracy-10% 

(positive slope) to which they reach maximum accuracy-10% (negative slope), and also correct 

for multiple comparisons (i.e. number of Top N features tested) using Bonferroni when reporting 

the p-value for the maximum accuracy achieved. 

For assessing the significance of the differences between decoding results (i.e. 

FC as features vs. beta estimates) we used the Accurate Confidence Intervals MATLAB 

toolbox for assessing whether the parameter p (probability of correct prediction) from 

two independent binomial distributions was significantly different 

(http://www.mathworks.com/matlabcentral/fileexchange/3031-accurate-confidence-

intervals). Briefly, these methods search for confidence intervals using an integration of 

the Bayesian posterior with diffuse priors to measure the confidence level of the 

difference between two proportions [25]. We used the code prop−diff(x1,n1,x2,n2,delta), 

(available from the above website) returning Pr(p1−p2>δ), where x1, n1, x2, n2, are number 

of correct responses and total predictions in two distributions being compared, and delta 

(zero in our case) is the null hypothesis difference between the probabilities.  

 

Results 
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Behavioral results:  The average response rate in the color discrimination task was 98% 

(σ=4.6%), mean accuracy was 97% (σ=3.5%), and mean reaction time was 0.65 s (σ=0.12), 

indicating that subjects performed the color discrimination task as instructed.   

 

Discriminating between implicit processing of fearful and neutral faces with patterns of functional 

connectivity: We applied atlas-based parcellation (see Figure 2) and computed pair-wise 

correlations between 270 nodes (derived from 135 atlas-based brain regions) using 40 total time 

points of fMRI data that were segmented and concatenated from two conditions; unattended 

and nonmasked (i.e. implicit) fearful (F) and neutral (N) faces (Figure 1).  This resulted in 36,315 

total functional connections (z-transformed Pearson correlations) for each condition of interest 

(F and N).   

We quantified the extent to which a subset of these functional connections could 

decode, or predict, the conditions from which they were derived by submitting them as features 

into a pattern classifier.  We used a linear kernel Support Vector Machine (SVM) with a filter 

feature selection based on the t-score of each feature (functional connectivity) in each training 

set.  Decoding accuracies for implicit fearful vs. neutral classifications (F vs. N) were plotted 

against the number of included features (ranked in descending order by t-score) in order to 

approximate the number of informative features relevant to the emotional expression of the 

facial stimulus.   

For implicit fearful vs. neutral (F vs. N) classification, accuracy reached 90% when 

learning was based on the top 15 features in each training set, a maximum of 100% (p < 0.002, 

corrected) at 25 features, and dipped back down to 90% at about 35 features (Figure 4A).  

Anatomical display of the top 25 overall features that differed between F and N conditions 

revealed functional connections amongst occipital regions, middle and superior temporal gyrus, 

lateral and medial prefrontal regions, thalamus, cerebellum and insula (Figure 4B-D, Table 1). 

The connection that carried the most weight in the linear SVM classifier was between right 
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angular gyrus and left hippocampus, which exhibited a greater correlation in the F vs. N 

condition (Table 1, F# 1).  To identify regions whose overall functional connectivity was greater 

during fear, the size of each node was made proportional to the sum of SVM weights of each of 

its connections.  The node with the most positive functional connectivity during fear was the 

thalamus (Figure 4B-D, large red sphere in center), which exhibited positively modulated 

functional connections with bilateral middle temporal gyrus and right insula.  

 In addition to parcelating the brain and defined nodes based on an atlas, we also 

functionally defined nodes using two approaches 1) using the same 160 MNI coordinates as 

used in Dosenbach et. al., 2010 [19] which were selected and defined based on separate meta-

analyses of the fMRI literature, and 2) a biased approach based on 92 nodes (2 eigenvariates 

from each of 49 ROIs defined as 6 mm radius spheres centered at peak coordinates) that were 

based on the GLM results from the same, whole dataset (for F contrast F > N thresholded at 

p=0.05, k=30).  For 1) achieved accuracies were 63-73% when using 75 to 130 features, and for 

2) accuracies between 76-86% were obtained when using 80 to 140 features (data not shown).  

Approach 2) is biased in that we defined our nodes based on the GLM results of the whole data 

set, and as such provides an upper bound on the expected accuracies when functionally 

defining nodes based on the GLM results in separate training sets during each iteration of 

LTOCV. Therefore we conclude that the above whole-brain, atlas-based approach, which 

achieved 90-100% accuracy with 15-35 features when using unbiased feature selection, is 

optimal to using functionally defined nodes.   

 

Discriminating between F and N faces using spatial patterns of activation: To compare the 

information content of patterns of interactivity (i.e. functional connections used above) vs. 

patterns of activity we also attempted F vs. N classifications using beta estimates, which are 

considered summary measures of activation in response to each condition. In order to make 

feature-selection/LTOCV and SVM learning more computationally tractable, 
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preprocessed functional data were resized from 2x2x2 mm voxel resolution to 4x4x4 mm 

resolution, and subject-specific GLM models were re-estimated, resulting in a reduction 

of total feature space per example from ~189,500 betas to ~23,500. Feature selection, 

LTOCV and SVM learning proceeded exactly as above for FC data. We observed 

accuracies of 66%-76% with ~500 to 2600 features, with peak accuracy at 76% (p = 

0.0044, uncorrected) at ~1900 features (Figure 5A).  The most informative voxels 

encompassed many distributed regions that included dorsolateral prefrontal/opercular 

cortex, fusiform gyrus, lateral occipital cortex, superior temporal gyrus, anterior 

cingulate, amygdala, parahippocampal gyrus, ventrolateral prefrontal cortex, pulvinar, 

precuneus, cerebellum, inferior parietal lobe and insula (Figure 5B).  Although 

significantly above chance, and despite the involvement of many more regions, 

maximum accuracy using betas was significantly less than the maximum accuracy 

achieved with FC (76% < 100%, p=5.37x10-7). 

We performed additional classifications using betas derived from the original, 

smaller voxel-sizes and with the addition of an initial (positively biased) feature selection 

step over the whole-dataset for the same issues of technicality stated above. This also 

served to estimate an upper bound on the expected accuracy when using beta-values: if 

maximum accuracy achieved was still less than when using functional connectivity with 

unbiased feature selection, then we can more readily conclude that functional 

connectivity features are more “informative” than beta estimates (when using the 

Canonical Hemodynamic Response Function (HRF) to model activation). For this 

analysis, the initial (biased) feature selection employed an F-test of the contrast F>N 

thresholded at p<0.01, cluster threshold=20, resulting in 4,226 total initial features. 

Feature selection/LTOCV and classification again proceeded as above across the range 

of 1 to 4000 features. In spite of initially biased feature selection, F vs. N classification 

reached 92% maximum accuracy (data not shown).   
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 In addition to using beta maps throughout the whole-brain, we derived beta weights 

using the same summary time courses (eigenvariates) that were extracted and used to compute 

pair-wise FC (270 total betas per condition per subject). For this, the GLM analysis was kept the 

same as above except that previously included nuisance regressors (6 motion, mean white and 

mean csf) and a low-pass filter were not included, since they were already removed from the 

time courses during extraction. Resulting estimated beta weights were then used as features to 

predict fearful vs. neutral faces using the exact same procedure when using whole-brain FC. 

Accuracies of between 69-79% were achieved with between 40 to 150 features (data not 

shown). 

 

Discussion 

Here we demonstrate that pattern analysis of large-scale functional connectivity can 

reliably decode the emotional expression of implicitly perceived faces, and that pair-wise 

functional connections are modulated by implicit fear perception.  This work also demonstrates 

a whole-brain, large-scale and exploratory approach for the identification of condition-specific, 

functional connectivity that avoids correcting for multiple comparisons amongst thousands of 

connections (discussed more below).  

The most significantly modulated functional connection during implicit presentation of 

fearful faces was between left hippocampus and right angular gyrus. The left hippocampus is a 

key region for memory (i.e. autobiographical memory retrieval) and the right angular gyrus has 

been implicated in mentalizing, or inferring the thoughts and feelings of others [26].  

Interestingly, during resting states, these two regions were found not to correlate with each 

other, but instead correlated with other regions that substantially overlapped, such as superior 

temporal sulcus (STS), anterior temporal lobe, posterior cingulate cortex, dorsomedial and 

ventral prefrontal cortex, inferior frontal gyrus, and the amygdala.  It has been proposed that this 

functional overlap facilitates the integration of personal and interpersonal information and 
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provides a means for personal experiences to become social conceptual knowledge [26].  Here, 

we observed the left hippocampus and right angular gyrus were correlated during implicit 

emotion (fear) perception, suggesting the integration of autobiographical memory with 

mentalizing during implicit perception of emotional faces.   

Other connections that discriminated between implicitly presented fearful and neutral 

faces included thalamus, superior occipital, frontal operculum, dorsal-lateral prefrontal cortex, 

cerebellum, parietal and posterior and anterior temporal regions (in the vicinity of the superior 

temporal sulcus, STS).  This latter observation is consistent with previous models and group 

studies that identify the STS and middle temporal gyrus as a primary neural substrate for 

processing the emotional expression of faces [27-29], and recent work demonstrating that 

multivariate pattern analyses applied to these regions could decode explicit emotional face 

recognition [30-32].  Importantly, the current findings suggest that interactions of temporal 

regions and STS with areas such ventral frontal pole, thamalus, parahippocampal gyrus and 

central opercular cortex (Table 1 F# 2, 12, 24 and 17) are also critically involved in implicit 

emotion perception.    

Contrary to our expectations, other than a connection between amygdala and putamen 

(Table 1, F# 10), the top 25 features that discriminated between the implicit fear and neutral 

conditions did not include any connections with the amygdala. This is not inconsistent with the 

observation in a recent meta-analysis that amygdala activity was significantly greater for explicit 

(attended) fear perception vs. implicit fear perception [33].  In addition, the finding that amygdala 

demonstrates a distinct temporal profile from other structures during emotional face processing 

could also explain why more functional connections with amygdala were not observed in the 

current analysis [10].  Instead, the structure which contributed the most in discriminating 

between the fear and neutral conditions was thalamus (Fig 4C and D, largest red sphere in 

center), which exhibited greater correlations with bilateral middle temporal gyrus (STS) and left 

insula during the fear condition (Table 1 rows 12, 22 and 24). This observation is consistent with 
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its purported role as a hub integrating cortical networks during the evaluation of the biological 

significance of affective visual stimuli [34], and with the observation of direct structural 

connectivity between several sub-regions of the thalamus with the STS [35]. The current results 

suggest that functional connectivity between thalamus and STS and insula play a prominent role 

during implicit fear perception. 

Interestingly, functional connections of the cerebellum were also significantly modulated 

during the fear condition. In particular, functional connections of the cerebellum with dorsal 

frontal pole (Table 1 F# 3) and fusiform gyrus (F# 13) were increased during fear, while 

connections with putamen (F# 6) were decreased.  Although cerebellum has been frequently 

reported to be activated or involved during emotion processing [33, 36, 37], the specific roles 

the various subregions play during affective processing remain to be elucidated [38].   

Previous studies have shown that emotional faces modulate amygdala-fusiform (FG) 

interactions [14, 39, 40].  Although amygdala-FG interactions did not appear amongst the top 

features for discriminatiing between implicit fearful and neutral faces, we did observe increased 

amygdala-FG connectivity during implicit fear relative to implicit neutral when we isolated that 

connection (Right_Temporal_Occipital_Fusiform_Cortex_PC1, MNI=[26,-48,-18] and 

Right_Amygdala_PC1, MNI=[18,0,-20], t=2.6, p<0.01), which is consistent with the above 

works.  

 

Large-scale functional network of fear processing: It is clear that fearful emotion processing and 

its behavioral consequences involve the complex interactions among many distributed regions 

[41-43].  Among these, the amygdala and its interactions with the frontal and visual cortex are 

critically involved in attended and pre-attentive threat and emotion processing [9, 13, 44, 45].  

Numerous previous studies have examined functional interactions between amygdala and 

several other regions in the fear and facial emotion processing pathway. Usually these have 

used Psycho-Physiological Interaction (PPI) analysis to study the functional connectivity of a 
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seed region, often the amygdala, with the rest of the brain during a fearful relative to non-fear 

perceptual or cognitive state [12, 45]. Other studies employed effective connectivity measures 

such as structural equation modeling (SEM) and dynamic casual modeling (DCM) to examine 

multiple interactions amongst a more limited set of apriori defined regions [14, 16].  

In contrast to the above-mentioned studies, the current approach is relatively model-free 

in that we estimate functional connectivity throughout the whole-brain without apriori restrictions 

based on anatomically defined areas or seed regions.  We estimate network connections using 

simple correlation measures, similar to a previous study that demonstrated condition dependent 

modulations in large-scale (41 nodes) functional connectivity across various syntactical 

language production tasks [46], but on a much larger scale (270 nodes in the current analysis).  

We then identified a subset of functional connections whose pattern could discriminate between 

implicit fearful and neutral face processing. 

An approach to estimate condition specific large-scale functional connectivity: There is 

considerable interest in examining the large-scale functional network architecture of the brain as 

a function of various cognitive processes or individual variation [18]. This is often done by first 

defining a set of functional "nodes" based on spatial ROIs and then conducting a connectivity 

analysis between the nodes based on their FMRI timeseries.  Group-based statistical 

parametric mapping can then be applied to resulting connections [47]. However, as the number 

of nodes (N) increases, the number of connections increases exponentially (# connections = 

(N*(N-1))/2) resulting in a multiple comparisons problem, and hindering the exploration-based 

query of condition-specific whole-brain functional connectivity on a large-scale. The equivalent 

of cluster-extent thresholding for graphs has been proposed, such as the Network Based 

Statistic [48], which estimates the probability of observing groups of linked, suprathreshold 

edges based on chance.  However, inferences can only be made on groups of interconnected 

edges, not individual ones. In addition, there is a substantial loss of information in model-based 
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approaches when conducting statistical inference on signals (functional connections) averaged 

over a group of subjects, and discounting the joint responses amongst many functional 

connections. 

    Here, we present a novel alternative to identify functional connections of interest based 

on their information content in machine-learning based multivariate pattern analyses that 

attempt to discriminate between two conditions that differ based on a parameter of interest (in 

this case the emotion expression of a presented face).  For this we used linear filter feature 

selection and plotted classification accuracy vs. number of included features in order to 

determine the number of features required to distinguish between conditions, and then identified 

the top N features on neuroanatomical display.  

“Information content” of neural activity vs. neural interactivity: Large-scale functional connectivity 

and network analysis has been increasingly used as the tool of choice for extracting meaningful 

and understanding complex brain organization [17, 18].  In the current work we applied simple 

Pearson correlation to estimate the large-scale functional connectivity of implicit threat-related 

emotion and ambiguous facial processing using a block-design.  Previous work based on 

simulations has indicated that correlation-based methods, including Pearson correlation, are in 

general quite successful in capturing true network connections [18].  Here we “validated” the 

estimated connections by testing whether a subset of features could be used to decode (“brain-

read”) the emotional expression of the facial stimulus that was presented during each block.  

For this we applied Multivariate Pattern Analyses (MVPA) techniques similar to those used 

previously to decode categories of viewed stimuli [49-53], orientation [54, 55], and the decisions 

made during a near-threshold fearful face discrimination task [56].  

       In contrast to the above-mentioned studies, which applied MVPA to the activity of 

spatially distributed regions and/or voxels, in the current work we applied pattern analysis to the 

correlations, or interactivity, between regions distributed throughout the whole-brain.  We 
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compared the decoding accuracy when using correlations as features versus beta estimates, 

(i.e. summary measures of activation amplitudes for each condition for each voxel).  We 

observed that the peak classification rate when using betas (76%, ~1900 features) was 

significantly lower than that achieved using FC (100%, ~25 features).  Even with an 

additional, initial feature-selection based on the entire data set which positively biased 

results, peak decoding accuracies when using ~4,000 beta values (92%) were lower than 

those reached when using only ~25 correlations as features and unbiased feature 

selection (100%). This suggests that there is substantially more information, relevant to 

cognitive-emotional neural processing, that is contained in the interactions between regions 

than is typically realized through standard univariate approaches.  However, it should be noted 

that this requires enough TRs (time-points) to compute meaningful correlations between brain 

regions for a particular condition, and would thus in general be impractical for decoding single-

trial or event-related data.  

   We observed that using whole-brain, anatomically defined ROIs to define nodes 

for whole-brain FC estimation yielded much higher classification rates than using nodes 

that were functionally defined (either from other meta-analyses or coordinates defined 

from GLM analysis of these same data).  This was not too surprising, as these 

functionally defined ROIs were smaller (6 mm radius spheres centered around peak F-

value coordinates from the contrast of F > N obtained from the GLM vs. atlas-based 

masks), and hence provided considerably less coverage of the brain. In addition, the 

GLM framework relies on multiple assumptions (i.e. model/shape of hemodynamic 

response function, effects add linearly, etc.) (Monti, 2011) and regions that show 

activation to a stimulus (i.e. sustained increase in signal amplitude during the duration of 

a block) may not necessarily exhibit differential functional connectivity and vice versa.  

These observations further the notion that there exists substantial information in whole-
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brain large-scale functional connectivity patterns, the nodes of which may not be 

captured or revealed adequately through standard GLM approaches. 

 

Limitations 

Previous simulations have raised concerns regarding the use of atlas-based approaches for 

parcellating the brain [18].  Because the spatial ROIs used to extract average time-series for a 

brain region do not likely match well the actual functional boundaries, BOLD time-series from 

neighboring nodes are likely mixed with each other. While this hampers the ability to detect true 

functional connections between neighboring regions, it has minimal effect on estimating 

functional connectivity between distant regions. This perhaps explains why in this study most of 

the functional connections that discriminated between fearful and neutral faces are long-

distance.  Future experiments using non-atlas based approaches would likely lead to better 

estimates of shorter-range functional connections.  We also note that the current atlas-based 

approach may have under-sampled the prefrontal cortex, and that possible future improvements 

could break up the prefrontal regions into smaller pieces in order to sample more nodes from 

this area. 

         Using Pearson correlation, it is possible that any association between two brain regions 

is the result of a spurious association with a third brain region.  Another limitation of the current 

study is the required amount of data used to extract quality features of brain activity.  Our use of 

correlations as features required a substantial number of time points (i.e. 40 scans per condition 

per subject) relative to previous studies of decoding emotion perception. Given this, it was not 

feasible to sample enough examples within a single or few subjects as is typical in multivariate 

pattern analysis studies, and we instead pooled examples across multiple subjects.  On the 



25 

 

other hand, the fact that reliable classifiers could be learned using examples from separate 

subjects speaks to the generalizability of our obtained results.    
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Table 1. F vs. N, Top 25 features (consensus features are in bold) 
F# Edge label Mean R 

(F) 
Mean R 

(N) 
T-value SVM 

weight 
FSets 

1 Right_Angular_Gyrus_PC1 - Left_Hippocampus_PC2 0.101 -0.027 4.3419 1.1347 38 

2 Right_Superior_Temporal_Gyrus_anterior_division_PC
2 - Left_Ventral_Frontal_Pole_PC1 

-0.08 0.066 -4.301 -0.9976 38 

3 Right_Dorsal_Frontal_Pole_PC2 - Cerebelum_6_L_PC2 0.07 -0.092 4.3555 0.97075 38 

4 Vermis_7_PC2 - Midbrain_PC1 0.127 7E-04 4.2176 0.88976 38 

5 Right_Temporal_Occipital_Fusiform_Cortex_PC2 - 
Pons_PC2 

-0.07 0.082 -4.4395 -0.8891 38 

6 Right_Putamen_PC2 - Cerebelum_Crus1_R_PC2 -0.07 0.094 -5.5049 -0.8803 38 

7 Left_Frontal_Orbital_Cortex_PC2 - 
Left_Cuneal_Cortex_PC2 

0.052 -0.082 4.4034 0.84121 38 

8 Right_Frontal_Operculum_Cortex_PC2 - 
Right_Dorsal_Lateral_Occipital_Cortex_superior_divisi
on_PC2 

0.118 -0.027 5.5009 0.81892 38 

9 Right_Frontal_Medial_Cortex_PC1 - 
Right_Cingulate_Gyrus_posterior_division_PC2 

0.003 0.133 -3.943 -0.8083 19 

10 Right_Amygdala_PC2 - Left_Putamen_PC1 0.009 0.131 -4.1008 -0.7664 34 

11 Right_Lingual_Gyrus_PC1 - 
Left_Dorsal_Lateral_Occipital_Cortex_superior_divisio
n_PC2 

0.088 -0.068 4.1602 0.7472 38 

12 Left_Thalamus_PC2 - Left_Planum_Polare_PC1 0.091 -0.076 4.7585 0.65859 38 

13 Left_Temporal_Occipital_Fusiform_Cortex_PC2 - 
Cerebelum_8_L_PC1 

0.043 -0.102 4.3388 0.62211 38 

14 Right_Central_Opercular_Cortex_PC2 - 
Left_Lingual_Gyrus_PC2 

0.061 -0.077 4.3741 0.61316 38 

15 Vermis_8_PC1 - Left_Planum_Polare_PC2 0.085 -0.042 3.9352 0.59068 19 

16 Right_Insular_Cortex_PC2 - Left_Caudate_PC2 0.028 -0.089 3.873 0.57516 11 

17 Right_Parahippocampal_Gyrus_anterior_division_PC1 
- Left_Middle_Temporal_Gyrus_anterior_division_PC2 

-0.02 -0.151 4.1911 0.55492 38 

18 Right_Ventral_Lateral_Occipital_Cortex_superior_division_
PC2 - 
Right_Middle_Temporal_Gyrus_posterior_division_PC2 

0.011 -0.074 3.8763 0.55272 15 

19 Right_Central_Opercular_Cortex_PC1 - 
Left_Planum_Polare_PC1 

0.077 0.219 -4.2479 -0.5409 38 

20 Left_Juxtapositional_Lobule_Cortex_Supp_Motor_cortex_
PC2 - Left_Inferior_Frontal_Gyrus_pars_triangularis_PC2 

0.041 -0.073 3.9504 0.48896 20 

21 Right_Precuneous_Cortex_PC1 - 
Left_Middle_Temporal_Gyrus_anterior_division_PC1 

-0.01 -0.12 3.8799 0.43938 15 

22 Left_Thalamus_PC2 - Left_Insular_Cortex_PC1 0.085 -0.057 4.2959 0.42672 38 

23 Right_Planum_Polare_PC2 - Cerebelum_Crus2_L_PC2 0.043 -0.083 3.8435 0.41322 12 

24 Right_Planum_Polare_PC1 - Left_Thalamus_PC2 0.068 -0.093 4.1779 0.39581 38 

25 Left_Cingulate_Gyrus_anterior_division_PC1 - 
Hypothalamus_PC2 

0.049 -0.059 3.8567 0.38869 13 
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Figure Legends 
 
Fig. 1. Experimental paradigm for the interaction of attention and affect (adapted from 

Etkin, et. al. 2004): stimuli were either fearful (F) or neutral (N) expression faces, 

pseudocolored in red, yellow,or blue. Each event was comprised of a face which was either 

masked (33 ms for a fearful or neutral face, followed by 167 ms of a neutral face mask of the 

same gender and color, but different individual; MF or MN, respectively), or unmasked (200 ms 

for each face; F or N) or masked. Ten events of the same type, spaced 2 seconds apart, were 

presented within each 20 second block, followed by 15 seconds of crosshair with black 

background. There were four blocks per condition, giving 40 time points in the correlation 

estimates per condition per subject.  In view of our specific hypotheses, only the unmasked 

conditions are discussed in the main text, while results for unmasked conditions are presented 

elsewhere (manuscript in preparation).   

 

Fig. 2. Node definitions and anatomical locations. Cortical and subcortical regions (ROIs) 

were parcellated according to bilateralized versions of the Harvard-Oxford Cortical and 

subcortical-atlases, and the cerebellum was parcellated according to AAL (left panel). ROIs 

were trimmed to ensure there was no overlap between them and that they contained voxels 

present in each subject. The top two eigenvariates from each ROI was extracted, resulting in 

270 total nodes throughout the brain (right panel).  For display purposes, node locations (black 

spheres) correspond to the peak loading value from each time-course’s associated eigenmap 

averaged over all subjects.  

 

Fig. 3. Data analysis scheme.  Time series from each condition (unmasked fearful and 

unmasked neutral, F and N) and for N regions (R1 though RN) were segmented from each 

subject’s whole run and concatenated (concatenation of two blocks for each condition shown in 

figure).  There were four 20 second (10 TR) blocks of each condition; hence each example was 
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comprised of 40 time points per condition per subject.  For each of example, correlation 

matrices were estimated, in which each off-diagonal element contains Pearson’s correlation 

coefficient between region i and region j.  The lower triangular region of each of these matrices 

were used as input features in subsequent classifiers that learned to predict the example (i.e. F 

or N) based on their observed patterns of the correlations.  Here, we used a filter feature 

selection based on t-scores in the training sets during each iteration of leave-two-out cross 

validation.  The difference map consists of the set of most informative features (those that are 

included in the most rounds of cross-validation and have the highest SVM weights.) 

 

Fig. 4.  Large-scale functional connectivity discriminates between unattended, conscious 

processing of fearful and neutral faces.  (A) Decoding accuracy when classifying F vs. N as 

a function of the number of features (1 to 40) included ranked in descending order by their 

absolute t-score. Maximum accuracy for F vs. N classification (100%, p < 0.002, corrected) was 

achieved when learning was based on the top 25 features in each training set.  Mean accuracy 

scores for shuffled data are plotted along the bottom, with error bars representing standard 

deviation about the mean. Posterior (B), ventral (C) and right lateralized (D) anatomical 

representation of the top 25 features when classifying supraliminal fearful vs. supraliminal 

neutral face conditions (F vs. N).  The thalamus (large red sphere in the center of each view) is 

the largest contributor of connections the differentiate the F from N. Red indicates correlations 

that are greater in F, and blue represents correlations that are greater in N.  For display 

purposes, the size of each sphere is scaled according to the sum of the SVM weights of each 

node’s connections, while the color of each sphere is set according to the sign of this value; 

positive sign, red, F > N and negative sign, blue, N > F. In addition, the thickness of each 

connection was made proportional to its SVM weight.   
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Fig. 5. Classification results using beta estimates as features. (A) Feature selection, 

cross-validation and SVM learning were performed exactly the same as for FC, but over 

the range of 1 to 4000 ranked features (voxels). Accuracies for F vs. N classification 

reached 66-76% with ~500-2500 features, with maximum accuracy (76%, p = 0.0044, 

uncorrected) at ~1,900 features. (B) The most informative voxels with positive SVM 

weights (F > N, yellow) included fusiform gyrus (-28,-20,-12), cerebellum (-28, -20), 

amygdala (-20), insula (-12), orbital and ventrolateral prefrontal cortex (-20, -12, -4), 

midbrain (-12), parahippocampal gyrus (-12), middle temporal gyrus and superior 

temporal sulcus (-12,-4,4), thalamus/pulvinar (4), dorsolateral prefrontal/opercular cortex 

(12,20,28), dorsomedial prefrontal cortex (20,28), and superior occipital cortex (20,28) and 

inferior parietal lobe (36). Informative voxels with negative SVM weights (N > F, blue) 

included temporal-occipital cortex (-20), subgenual anterior cingulate (-12,-4), striatum (-

4,4), lingual gyrus (4,12), precuneus (20) and dorsolateral prefrontal cortex (28,36). (B). 

Brain images are displayed using Neurological convention (i.e. L=R), and top left number 

in each panel represents the MNI coordinate (z) of depicted axial slice. 
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Brain-reading fear perception with large-scale functional connectivity. Spiro P. Pantazatos (Columbia 

University, New York, NY), MATLAB to CARET5 visualization script by Nico Dosenbach (Washington 

University, St. Louis, MO) 

Short Description:  

Large-scale functional connectivity is a sensitive measure of cognitive processes during 

perception of emotional expression. Shown are the pair-wise correlations that discriminate 

between implicit processing of fearful vs. neutral faces.  Red indicates correlations that 

increased during fearful face presentation, and blue represents correlations that decreased, 

while the size of each sphere (node) represents its overall magnitude of difference between 

conditions.  
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