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Supplemental Information 

 
Construction of Z-scores 

 We used a regression approach to model the effects of normal age differences together 

with intracranial volume (ICV) variation on specific dependent measures (1, 2).  The control 

data used to construct the standardized Z-scores were 57 men and 62 women, age 20 to 74 

years; 108 of these participants also served as controls in the current study.  We then used the 

residuals from the regression analysis of the controls to adjust the values of each dependent 

measure of each patient; the resulting measures are expressed as age- and ICV-corrected Z-

scores, where the expected mean of the controls = 0 ± 1 SD.  The regional volume of each 

patient is also expressed as a Z-score, which can also be considered an expression of the effect 

size.  Plotting (regressing) the ICV- and age-adjusted Z-scores of the patients against their ages 

reveals the extent to which age remains a significant moderator of the variable of interest 

beyond that already accounted for in normal aging.  

Magnetic Resonance Imaging (MRI) Quantification 

 Image preprocessing.  All acquired structural images were first corrected for intensity 

bias by applying a second-order polynomial multiplicative bias field computed via entropy 

minimization (3).  The late-echo fast spin echo (FSE) image was corrected using the bias field 

computed from the corresponding early-echo image to maintain the ratio of early- and late-

echo values at each pixel, which keeps quantities derived from this ratio (e.g., T2) invariant.  For 

each subject, the bias-corrected early-echo FSE image was then registered to the bias-corrected 
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spoiled gradient recalled echo (SPGR) image using intensity-based nonrigid image registration 

(4) (http://nitrc.org/projects/cmtk).  The SPGR, early-echo FSE, and late-echo FSE images were 

each skull stripped using FSL's Brain Extraction Tool, BET (5).  The early- and late-echo brain 

masks were reformatted into SPGR image space and combined with the SPGR-derived brain 

mask via label voting (6) to form the final SPGR brain mask. 

 The imaging parameters for this longitudinal study were established 10 years ago and 

maintained throughout the study.  For further assurance of consistency over the study period, 

we have complete control over the acquisition protocols for our MRI studies.  Even though this 

study extended over a considerable period of time, we used the same acquisition protocol and 

ran phantoms before and after equipment upgrades to examine drift.  Routine phantom data 

were used to evaluate spatial fidelity, and drift was corrected by adjusting scanner calibration 

parameters when necessary to maintain spatial stability within manufacturer guidelines. 

 Registration and atlas-based parcellation.  For each subject, the skull-stripped SPGR 

image was registered to the SPGR channel of the SRI24 atlas (7) (http://nitrc.org/projects/sri24) 

via nonrigid image registration (4).  We chose the SRI24 atlas over other available brain 

templates (e.g., MNI152) because of its ability to discern detailed anatomical structures, which 

can thus be unambiguously outlined directly in the atlas images without the need to access the 

images that were used to create the atlas itself.  

 Tissue segmentation.  All bias-corrected and skull-stripped SPGR images were 

segmented into three tissue compartments (gray matter, white matter, cerebrospinal fluid) 

using FSL's FAST tool (8).  As tissue priors to both initialize and guide the classification, we used 

the tissue probability maps provided with the SRI24 atlas, reformatted into subject SPGR space 
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via the same transformations described above. 

 To address the question about the potential influence of white matter hyperintensities 

(WMHIs) on segmentation, we used Fluid Attenuated Inversion Recovery (FLAIR) images 

registered to the native SPGR data for each subject to identify WMHIs in the centrum 

semiovale.  A sample of the supratentorial white matter skeleton, which excluded the midline 

corpus callosum and is the primary site of WMHIs, comprised about 75 cc in each hemisphere 

and was used as a FLAIR region of interest (ROI).  The mean and standard deviation of the FLAIR 

image data were computed for each subject and the percentage of pixels with intensity 3 SD 

greater than the mean was considered the WMHI burden.  Across all subjects, there was a 

significant WMHI burden correlation with older age, but the groups did not differ significantly in 

WMHI burden.  The primary measures of the current analysis were of cortical and allocortical 

gray matter, which are areas not adjacent to areas typically affected by WMHIs.  Indeed, 

misclassifying WMHIs in white matter regions as gray matter would actually militate against 

finding group differences. 

 ROI selection.  The selection of ROIs for analysis was based on 1) the need to have 

adequate numbers of pixels per ROI to obtain reliable estimates, 2) correspondence with our 

previous reports, and 3) reduction of the data to meaningful regions thought to be particularly 

susceptible to alcohol abuse and HIV infection.  Special consideration was given to the frontal 

sulci because of the vulnerability of lateral frontal regions to alcoholism and the potential of 

finding a compounding effect with additional disease burden. 

 We recognize that segmentation and parcellation are imperfect attempts to delineate 

brain structures with automated routines and can result, for example, in partial voluming.  To 
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mitigate such problems, we routinely examine the resulting images and search for statistical 

outliers to aid in detection of "failures."   

 We further note that the native resolution of the images was .9375 x .9375 x 4.0 = 

3.515625 mm3; the smallest ROI (right globus pallidus) was 1419 mm3; because there were 

more than 400 voxels on average for analysis for the smallest ROI we believe there was 

adequate sensitivity to detect individual and group differences with the resolution of the native 

data.  Consequently, we were mindful of the size of a structure that is possible to segment 

automatically; thus, for example, we did not include the mammillary bodies in our atlas. 
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