Unpublished model for desethylamodiaquine

JT estimated a two-compartment model with first-order absorption and elimination from rich desethylamodiaquine concentration-time data. For full details of the study from which the data were collected see [28]. Two competing sets of PK parameter values for this model were entered into POPT (Table S1, both sets provided an adequate description of the data). The estimates of the BSVs for k_a and V_p/F were effectively zero ($\leq 0.001\%$), but to account for larger plausible values that may be encountered in future studies they were set to 50% and 30%, respectively, in POPT. Furthermore, since the estimates of the BSVs for the other parameters were also quite small, they were set to 30% in POPT for the same reason.

The second set of parameter values listed in Table S1 was used for the simulation-estimation procedure. Strong correlation was observed between the BSVs of CL/F and V_c/F , so a full variance-covariance matrix was specified for the BSVs of CL/F, V_c/F and Q/F in the estimation step.

Results from the evaluation of the designs

Tables S2-S6 display the expected and empirical %RSEs of model parameters for each optimal design.

	Paramete	r set 1	Parameter	\cdot set 2^{q}
Parameter	Estimate	BSV^*	Estimate	BSV^*
$k_a (/h)$	0.03	_†	0.70	_†
CL/F (L/h)	32.2	0.06	32.1	0.06
V_c/F (L)	106	0.07	2530	0.07
Q/F (L/h)	42.9	0.03	37.4	0.03
V_p/F (L)	6940	_‡	5310	_‡
$\sigma^{\bar{b}}$	0.35	0^{\sharp}	0.35	0^{\sharp}

Table S1: Parameter estimates for the unpublished two-compartment model for desethylamodiaquine

*Between-subject variance

 $^\dagger \mathrm{Effectively}$ zero; set to 0.50 in POPT

[‡]Effectively zero; set to 0.30 in POPT

 $^{\flat}$ Additive on log scale

 $^{\sharp}$ Fixed to 0

^{\$}Used for the simulation-estimation procedure

		P	K param	eters			Between	subject v	/ariabilit	y	Resid	lual error
	k_a	CL/F	V_c/F	Q/F	V_p/F	k_a	CL/F	V_c/F	Q/F	V_p/F	Additive	Proportional
Optimal design												
Non-pregnant adults												
P0PT*,∆	9.71	3.36	4.96	ı	,	28.4	23.9	15.1	ľ	ı	8.85	13.2
Simulation-estimation $(n=33)^{\dagger,\sharp,\$}$	7.49	5.79	8.37	I	I	1	36.0	27.0	I	ı	7.14	
P0PT**,□	10.9	8.00	4.64	15.1	30.2	30.7	25.6	26.1	28.1	44.8	11.8	10.1
Simulation-estimation $(n=33)^{\ddagger,b,\$}$	12.7	12.3	8.72	39.7	35.8	T	58.2	46.1	T	72.4	1	10.7
Pregnant women												
P0PT*,◇	13.3	3.51	5.05	ı	'	48.6	23.0	15.5	ľ	ı	7.19	13.0
Simulation-estimation $(n=33)^{\dagger, \natural, \$}$	17.9	5.15	8.21	ı	'	50.3	49.0	33.9	ľ	ı	9.90	ı
Children												
$POPT^{*, riangle}$	14.7	6.07	3.59	I	I	55.7	27.5	23.4	T	I	7.35	22.6
Simulation-estimation $(n=34)^{\dagger, \nabla, \$}$	19.9	8.25	5.54	ı	'	ı	60.5	38.6	ı	ı	7.92	'
*Median expected %RSEs across comp	eting of	ne-compar	tment m	odels								
$^{\bigtriangleup}$ Proportional residual error not report	ted, set	to 10%; I	3SV of k	$_{a}$ not re]	ported, se	t to 50%						
[†] Empirical %RSEs for the one-compart	sment n	lodel										
^{\ddagger} BSV of k_a and proportional residual e	error no	t reported	in [23]									
**Median expected %RSEs across com	peting t	wo-compa	urtment 1	nodels								
\square BSV of k_a not reported, set to 50%; a	additive	residual	error set	to 179 r	lg/mL							
[‡] Empirical %RSEs for the two-compart	tment n	nodel										

Table S2: Expected and empirical percent relative standard errors (%RSEs) of model parameters assuming the optimal design for mefloquine, with a dosing regimen of 8.3 mg/kg at 0, 24 and 48 hours

^bBSV of k_a and additive residual error not reported in [14] ^oBSVs and residual errors set to those for the non-pregnant adults ^dAssumed BSVs and additive residual error as reported in [23]; assumed BSV of k_a of 50% ^vBSV of k_a and proportional residual error not reported in [12] [§]All NONMEM runs successful

		[]	K parame	eters			Between-s	ubject v	ariability		Residua	l error
	k_a	CL/F	V_c/F	Q/F	V_p/F	k_a	CL/F	V_c/F	Q/F	V_p/F	Additive F	roportional
Optimal design												
Non-pregnant adults												
$POPT^{*, riangle}$	5.84	2.28	3.46	ı	I	14.2	15.7	10.4	T	ī	7.06	7.15
Simulation-estimation $(n=33)^{\dagger, \sharp, \$}$	5.36	5.54	8.90	ı	ı	I	41.6	27.5	I	I	7.07	I
P0PT**,□	6.56	5.07	2.95	10.5	17.0	16.3	17.5	16.3	19.4	35.7	9.01	5.72
Simulation-estimation $(n=33)^{\ddagger,b,\$}$	12.4	11.8	10.0	33.8	25.3	I	49.2	42.9	I	62.1		10.5
Pregnant women												
POPT*, \	7.35	2.49	3.50	ı	ı	22.9	16.2	10.6	ı	ı	5.63	6.68
Simulation-estimation $(n=33)^{\dagger, \sharp, \$}$	16.2	6.03	9.17	ı	ı	38.2	51.8	28.3	ı	ı	8.61	ı
Children												
$POPT^*, riangle$	7.66	4.13	2.24	ı	ı	23.3	18.5	13.1	I	I	5.86	11.7
Simulation-estimation $(n=34)^{\dagger, \nabla, \$}$	11.2	8.90	4.81	ı	ı	'	73.4	37.3	ı	'	7.34	ı
*Median expected %RSEs across comp	beting on	e-compar	tment me	odels								
$^{\bigtriangleup}$ Proportional residual error not report	ted, set	to 10%; E	$SV of k_a$	not rep	orted, set	to 50%						
[†] Empirical %RSEs for the one-compart	tment m	odel										
^{\sharp} BSV of k_a and proportional residual ϵ	error not	reported	in [23]									
**Median expected %RSEs across com	peting t	wo-compa	rtment n	nodels								
\square BSV of k_a not reported, set to 50%; i	additive	residual e	error set	to 179 ng	g/mL							
[‡] Empirical %RSEs for the two-compar	tment m	lodel										
^b BSV of k_a and additive residual error	not rep	orted in [14]									
[◊] BSVs and residual errors set to those	for the 1	non-pregn	ant adul	ts.								
^h Assumed BSVs and additive residual e	error as	reported	in [23]; a:	ssumed I	$3SV of k_a$	$_{\iota}$ of 50%						
∇BSV of k_a and proportional residual	error no	t reported	1 in [12]									
[§] All NONMEM runs successful												

Table S3: Expected and empirical percent relative standard errors (%RSEs) of model parameters assuming the optimal design for mefloquine, with a dosing regimen of 15 mg/kg at 24 hours and 10 mg/kg at 48 hours Table S4: Percent relative standard errors (%RSEs) of model parameters assuming the optimal design for lumefantrine, with a dosing regimen of 12 mg/kg at 0, 8, 24, 36, 48 and 60 hours

		Ы	K param	eters			Between-	subject v	ariabilit	v	Resid	ual error
	k_a	CL/F	V_c/F	Q/F	V_p/F	k_a	CL/F	V_c/F	Q/F	V_p/F	Additive	Proportional
Optimal design					1							
Non-pregnant adults												
$POPT^*, riangle, \ddagger$	I	5.53	17.7	11.6	21.9	I	18.9	18.0	50.3	ı	5.92	16.8
Simulation-estimation $(n=33)^{\dagger,\sharp,\$}$	I	10.7	23.7	17.6	18.5	I	40.7	34.4	I	ī	9.07	'
Pregnant women												
POPT*, ⁴	5.32	5.28	15.9	8.50	8.36	24.5	14.4	16.0	16.2	15.9	ı	10.3
Simulation-estimation $(n=33)^{\dagger,\$}$	10.3	5.77	21.4	10.0	10.7	34.9	29.6	41.0	33.6	28.6	ı	19.3
Children												
$POPT^*, h, \nabla$	22.2	5.97	8.99	ı	ı	24.3	16.8	16.6	ı	ı	I	4.58
Simulation-estimation $(n=34)^{\dagger,b,\$}$	45.2	6.01	15.7	T	I	41.7	I	34.7	I	I	I	9.49
*Median expected %RSEs across com	peting n	nodels										
$^{\bigtriangleup}$ Proportional residual error not repo	rted; set	to 10%										
[‡] k_a and the BSVs of k_a and V_p/F we	ere fixed	due to a	structur	al identi	fiability p	roblem w	ith the m	odel repo	orted in	[15]		
[†] Empirical %RSEs												
^{\ddagger} k_a and its BSV were fixed to the val	lues rep	orted in [1	[5] and t	he BSVs	O(F)	and V_p/F	were omi	itted fro	n the est	cimation		

[†]Additive residual error set to 23 ng/mL and declared as fixed ∇ BSV of CL/F not reported in [17]; set to 30% ^b BSV of CL/F not reported in [17]; additive residual error was fixed to the value reported in [17] [§]No. of successful NONMEM runs: non-pregnant adults, 99; pregnant women, 100; Children, 97

Table S5: Percent relative standard errors (%RSEs) of model parameters assuming the optimal design for piperaquine, with a dosing regimen of 18 mg/kg at 0, 24 and 48 hours

		Р	K param	eters			Between-	subject v	/ariabilit	ŷ	Resid	lual error
	k_a	CL/F	V_c/F	Q/F	V_p/F	k_a	CL/F	V_c/F	Q/F	V_p/F	Additive	Proportional
Optimal design												
Non-pregnant adults												
$POPT^*, riangle$	20.2	4.69	11.2	11.1	7.56	18.9	17.2	16.8	25.5	30.9	I	8.65
Simulation-estimation $(n=33)^{\dagger,\$}$	46.1	10.0	22.7	18.7	11.2	51.5	66.3	33.8	62.7	69.4	I	16.0
Simulation-estimation $(n=33)^{\dagger, \ddagger, \$}$	24.3	8.71	26.5	18.9	9.18	63.0	33.1	51.3	43.4	42.9	I	11.9
Pregnant women												
$POPT^{*, riangle}$	20.1	4.61	11.2	11.7	7.50	19.5	17.0	16.6	29.2	31.1	ı	9.40
Simulation-estimation $(n=33)^{\dagger,\diamond,\S}$	19.7	9.22	21.7	15.6	8.69	49.8	50.0	58.6	53.7	57.3	ı	12.0
Children												
$POPT^{*}, riangle, \ddagger$	9.68	3.43	11.6	4.79	2.86	21.3	18.7	I	ı	ı	I	3.85
Simulation-estimation $(n=34)^{\dagger,b,\sharp,\$}$	19.2	3.39	33.6	13.9	13.1	63.5	I	122.6	56.7	48.2	ı	10.3
Simulation-estimation $(n=34)^{\dagger}, \nabla, \$$	19.0	8.52	10.8	8.88	8.47	50.2	36.8	35.8	39.9	46.4	ı	14.4
*Median expected %RSEs across compt	eting m	odels										
$^{\bigtriangleup}$ Additive residual error not reported in	n [18, 19]; set to 1	ng/mL	and decl	lared as fi	xed						
[†] Empirical %RSEs												
‡ Data simulated from [27]; analyzed wi	th a two	ompart-	ment mo	del (wit]	h fixed lag	g-time)						
^o Data simulated from [27]; analyzed wi	th a two	o-compart	ment mo	del								
$^{\ddagger}BSVs \text{ of } V_c/F, Q/F \text{ and } V_p/F \text{ set as } s$	additive	in POPT	and dec	lared fix	ed; BSV e	of CL/F	not repor	ted, set	to 30% (additive)	n POPT	
^b BSV of CL/F not reported in [18]												
^h Between-subject variability assumed ex	xponent	ial										

 $^{\nabla}$ Data simulated from [26]; analyzed with a two-compartment model (with fixed lag-time) $^{\$}$ No. of successful NONMEM runs: non-pregnant adults, 100; pregnant women, 100; Children, 85 for data simulated from [18], 88 for data simulated from [26]

desethylamodiaqine, with a dosing	
SEs) of model parameters assuming the optimal design	d 48 hours
Table S6: Percent relative standard errors (%R	regimen of 10 mg/kg of amodiaquine at 0, 24 ar

		Id	< param	eters			Between-	subject v	ariability	7	Resid	ual error
	k_a	CL/F	V_c/F	Q/F	V_p/F	k_a	CL/F	V_c/F	Q/F	V_p/F	Additive	Proportional
Optimal design					n							
Adults												
$ ext{POPT}^*, riangle$	14.0	4.56	11.0	9.57	8.15	31.9	18.1	61.8	38.4	29.3	13.7	8.21
Simulation-estimation $(n=66)^{\dagger,\sharp,\$}$	13.5	3.94	7.45	9.59	7.62	ı	29.9	49.3	64.3	,	I	5.71
Children												
$POPT^*, riangle, b$	19.2	4.43	15.9	11.0	8.24	48.2	29.2	31.7	66.6	33.1	12.3	6.78
Simulation-estimation $(n=34)^{\dagger, \sharp, \$}$	21.7	5.55	17.9	19.0	11.9	I	44.8	I	I	ı	1	7.32
*Median expected %RSEs across com	peting r	nodels										
$^{\bigtriangleup}$ Additive component of residual erro	r not re	ported in	[21] or e	stimated	in the m	odel provi	ided by J'	T; assum	led to be	10 ng/mI	L in POPT	
[†] Empirical %RSEs												

Example to the set of CL/F was reported in [21]; BSV for k_a set to 50% and BSVs for other parameters set to 30% bound the BSV for CL/F was reported in [21]; BSV for k_a set to 50% and BSVs for other parameters set to 30% and set to 30% $^{\circ}$ Only the BSV for CL/F was reported in [21] and the BSV for k_a set to 50% and BSVs for other parameters set to 30% $^{\circ}$ Only the BSV for CL/F was reported in [21] and the BSV for k_a set to 50% and BSVs for other parameters set to 30% $^{\circ}$ Only the BSV for CL/F was reported in [21] and m_a set to 50% and BSVs for other parameters set to 30% $^{\circ}$ Only the BSV for R and R an