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Supplementary Methods
Gene expression datasets:

Herein, we give a full description of the gene expression datasets we used in this work. We used three
prostate cancer gene expression data, one leukemia and one ovarian cancer. For prostate cancer, we
used data from MSKCC Prostate Oncogenome Project that is available at the Gene Expression Omnibus
(GEO accession number : GSE21032 ). The data we used in this study contains expression level of 26443
genes and 179 samples (131 primary cancer, 19 metastatic, and 29 normal samples). The second
prostate data is from the prostate Swedish prostate cohort (GSE16560) that contains expression of 6144
genes and 455 samples. The third prostate cancer data is from Singh et al [2]; it contains expression of
12600 genes across 59 prostate cancer samples and 87 normal samples. All data was normalized using
quantile normalization using matlab function (quantilenorm()) then log transformed (base 2).

We used leukemia data from GSE425 with 23125 genes in 119 AML samples. The final data we used is
ovarian cancer from The Cancer Genome Atlas Project. Data was downloaded from the TCGA website
(http://www.cbioportal.org/public-portal). In this data the gene expression and miRNA expression of
489 samples have been analyzed . Detailed description of the data is available in [4]. We also used DNA
copy number data from both the ovarian cancer and MSKCC Prostate Oncogenome Project to validate
our results.

Existing Methods

Tomlins et al [1] proposed a method called Cancer Outlier Profile Analysis (COPA) to detect fusion genes
using microarray gene expression data. The idea behind COPA is simple, cancer samples that have
promoter to oncogene fusion resulted in high expression of the oncogene in the corresponding sample,
and since such fusions are rare, only a subset of cancer samples harbour fusions, depending on the
cancer type. So, the problem of detecting gene fusions is mapped into finding genes that are
overexpressed in a subset of samples. Tomlins et al [1] ranked genes based on their 75th, 90th, and 95th
percentile after centering the gene expression data by subtracting the median and dividing by median
absolute deviation (MAD). MacDonald and Ghosh [5] added an additional criterion to rank genes with
ties in the previous rank. They assessed the difference between the 75th percentile of the tumor and
normal samples, and then computed the sum of these differences for each gene pair. The resulted value
guantifies how different the outlier pairs are from their corresponding normal samples. Also, their work
identifies pairs of genes that have large number of mutually exclusive outlier(cancer) samples, but few
or no normal outliers. Other variations of COPA to improve its performance are outlier sum (OS) [6],
outlier robust t-statistic (ORT)[7] and percentile analysis for differential gene expression (PADGE) [8]. OS
only uses genes with expression values above certain cut-off IQR (Interquartile range) value in cancer



samples. ORT is not much different from OS, they only differ in the way they standardize gene
expression values as detailed in the methods section. PADGE uses several percentile values and then
take the maximum value. A recent method called Gene Tissue Index (GTI)[9]was proposed to consider
the number of outlier samples that have expression value greater than a cut-off value (IQR). GTI deals
with each tissue separately and then identifies genes with the largest difference in the GTI between
cancer and normal tissues.

Cancer Outlier Profile Analysis (COPA)

The COPA [1] statistic is defined as the r'" percentile of the disease samples' standardized expression
values using r = 75; 90; or 95 as suggested by the authors. Each gene(i) expression value is standardized
by subtracting the median(i) and divided by the median absolute deviation (mad(i))
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After standardization, COPA ranks genes based on their r'" percentile of cancer samples S1 qr(X~:j €
S1). The COPA statistic can be formulated as:
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COPA is very similar to t-test statistics but replaces the average by median and standard deviation by mad.
Outlier sums (OS)

Outlier sums [6] was introduced to improve the r'" percentile factor of COPA. OS uses only samples of
values greater than a cut-off value q75 + IQR. Set of samples of values greater than the cut-off value for
gene(i) is defined as O;

Oi = {]] € Sl,XU > q75l + IQRL}
where q75 is the 75th percentile and IQR is (q75-g25).
Considering only samples in Oi for each gene, OS standardizes the expression value of gene(i) by
subtracting the median(i) and dividing the result by mad(i). The final score is the sum of the

standardized values of each gene.
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Though OS overcomes the problem of the r'" percentile, it is still single gene based method and unable
to distinguish between biomarkers and rearranged genes when S2 is greater than S1.

Outlier Robust t-statistic (ORT)



The outlier robust t-statistic [7] is very similar to OS. It replaces the overall median by the median of
normal samples. They also defined a new mad by subtracting the median of each group from the values
in that group and then find the overall median.
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Where R is the set of outliers disease samples for gene(i) defined by
R; = {j:j € S1,x;; > q75;" + IQR;*}

Ri unlike Oi only focuses on normal samples. Again we think that this method is not proper to
discriminate between biomarkers and gene fusion.

Gene Tissue Index (GTI)
The GTIl algorithm [9] weights the proportion of outliers by a robust measure of how outlying the
outliers are in a single group. A GTl value of gene(i) for each group (S) is defined as
S tls * (XLS — Bi)
GTI; = ———
NEP&

where t’; is the number of samples with expression values above the cut-off in group S, |S| is the total
number of samples in group S, X’ is the average expression of the samples above the cut-off for gene(i)
in group S, and B; is the standard statistical outlier cut-off for gene(i) (75 + IQR). Then for each gene,
GTl, = GTI®Y; -GTI* is calculated
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Figure S1: EigFusion gene ranking and transformation. (A)EigFusion score is plotted against the rank of each gene.
The figure highlights the top genes that are predicted to be rearranged in Taylor prostate cancer dataset. We selected
the cut-off value to be mean of all score values plus two times the standard deviation (avg+2stdev). (B)ERG and
FABPS5 are two examples of genes that are overexpressed in less than 50% of cancer samples (primary and
metastatic). KLK3 and FOLHL1 are two examples of genes underexpressed in less than 50% of cancer samples. (C)
One of the challenges most methods face is filtering out false positive genes. We used testso gene to show how
EigFusion is able to filter this gene out when the cancer sample size is 50. COPA transformation is unable to filter

outtestso gene due to the transformation function. This return to the importance of subtracting the median of cancer
samples instead of the overall median.
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Figure S2: 43 genes are selected as overexpressed in ERG fusion positive or ERG negative fusion samples. Most
genes are have higher frequency in ERG negative samples. KCNH8, GPR116 and ANKRD34D are more rearranged
in ERG positive samples.
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Figure S3: Functional altered gene modules in ovarian and leukemia. Integrating the discovered rearranged genes
with functional protein interactions revealed functional modularity of the rearranged genes with enriched pathways
in both ovarian (A)and leukemia tumor(B)
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Figure S4. Functional association of altered genes in ovarian tumor to dysregulated pathways in cancer.
(A)Integrating FPIs and CNA also revealed that ovarian rearranged genes forms modules that are linked
with MYC and BRCAL. (B) Ovarian rearranged genes have high alteration rate compared with prostate.
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