
Volume 14 Number 1 1986 Nucleic Acids Research

Fast analysis of DNA and protein sequence on Apple HIe: restriction sites search, alignment of
short sequence and dot matrix analysis

Christian Marck

Service de Biochimie, Bat- 142, DMpartement de Biologie, Centre d'Etudes Nucldaires de Saclay,
91191 Gif-sur-Yvette, Cedex, France

Received 11 July 1985

ABSTRACT
A fast restriction sites search algorithm using a quadruplet look-ahead

feature has been written in 6502 assembly language code. The search time,
tested on the sequence of pBR322, is 4.1 s/kilobase using a restriction site
library including 112 specificities corresponding to a total site length of
over 700 bases. The search for a short sequence (< 36 bases) within a
longer one (up to 9999 bases) with a given number of mismatchs or gaps
allowed has also been written in assembly language. Typical run time for the
search of a 12 base sequence with 1,2 or 3 gaps allowed are 6.2, 9.4 or 13.6
s/kilobase, respectively. The dot matrix analysis needs 7.5 minutes per
square kilobase when using a stringency of 15 matched bases out of 25. A
7/21 matrix of two 500 amino acid proteins is obtained in 3 minutes. These
three routines are included in DPSA, a general package of programs allowing
manipulation and analysis of DNA and protein sequences ().

The DPSA (DNA and Protein Sequence data Analysis) program has been
developed for the analysis of a yeast gene (1). It is intended to be an easy
desktop tool for the manipulation and analysis of mid-length DNA sequences
(up to 9999 bases). DNA sequences can be also converted into protein
sequences and further analysed with the program.

DPSA includes all classical manipulation of DNA sequence: strand
exchange, merging, stop codon search, translation into protein, codon usage,
protein molecular weight prediction and others. These features, for the sake
of shortness, will not be described here. During the development of this
program, we have tried to balance between the rapidity of execution and a
relative ease of programming. For this reason, the 6502 machine language is
used whenever run time is a critical factor while Basic is used for
dialogues and printout. In order to emphasis the benefit in run time
obtained, three parts of the programs are exposed in greater detail.

* The program described in this paper is available from the author. Please
send a blank 5 1/4" diskette and a self-addressed mailing label. A small
charge may be requested to cover mailing.

© IR L Press Limited, Oxford, England. 583

Nucleic Acids Research

Fast auadruDlet look-ahead restriction site search The continuous

appearence of new restriction specificities requires easy updating of the

restriction sites list used. On the other hand high speed search makes the

use of machine language necessary on small computers. Therefore, in order to

avoid reassembly every time the restriction data file has to be modified, we

use a separate basic program that builds up a binary data file containing

all necessary data i.e. recognition sequences, names, point of cleavage and

other data. The recognition sequencts as well as the DNA sequences are

stored using a binary coding of bases (2,3). We use the following code:

A,C,G and T are coded as the binary equivalent of 1,2,4 and 8, respectively.

This allows a fast comparison of any two degenerate bases with a byte to

byte logical AND (2,3). Other numeric codes from 3 to 15 are attributed to

the degenerate bases M,R,S,V,W,Y,H,K,D,B and N, respectively (4). For the

sake of simplicity the above code is used throughout the program, even for

the one-letter code of proteins, codes over 15 being attributed to the

remaining letters.

The search algorithm makes use also of the following observation. If

one lists the 256 possible quadruplets and counts those found at the

beginning of all restriction sites (included in a given library), it appears

that 133 are never found. The 123 quadruplets found start with an A: 21, Cs
33, 6: 56 or T: 13 (recent addition of new specificities (5) have shown that

the quadruplet usage is not drastically modified - note that nearly all 64

possible quadruplets starting with 6 are found at the beginning of

restrict ion sites while T is seldom used as the first base of a restriction

site). We have tested the following look-ahead algorithm. A table of

quadruplet use (256 elements) is built every time the restriction site

library is updated. During the restriction site search, the quadruplet value

is computed for each position in the sequence and used to decide whether the

search can be skipped or not. The library we use routinely includes 112

different restriction sites, the lengths of which represent a total of over

700 bases (the library includes all restriction endonucleases whose

recognition sequence and cleavage are known (5)). Using pBR322 as a test

sequence, the search proceeds at 4.1 s/kilobase with the look-ahead

algorithm or 8 s without it. The length of the binary code is only 127 bytes
while the binary restriction data file is over 2500 bytes. The use of a

quadruplet code seems the best choice since: a quadruplet is just coded

within a byte (the code used in this special case is 0,1,2 and 3 for A,C,G
and T, respectively), the quadruplet corresponds to the shortest restriction

584

Nucleic Acids Research

pSR3 1-283

Hind Ill
TthIll 11 Taq I Nia IV

Nia III Alu I Claa Alu I Ib I

TTC TC BA M A AZ M ZA Co SA7 C 100

It: S : S
5 15 23 36 76

7 24 76
29

Nat II
SceF I

ScrF I Nci I
EcoR II MhR I

Nia IV BtN I Rsa aU96 1
HimP I Noll Na I111 lNI lIp Ha 11
Hla I Fok I i I Nh I Fok I Hi 1 Sen I EcoR V

2TCM 2 22 22 22CAC2TCTTCC220
3

L: 1 gr rM g

11 112 119 126 133 161 173 185
11 115 125 134 161 170

119 130 164 172
136 173
136 170

173
173
175

End of restrictiu ap

Fig. 1. Example of restriction map produced by the restriction search
program. The complete pBR322 sequence is printed in 10 minutes.

site and finally, the look-ahead table is only 256 elements long (the use of

sextuplets would require a 4096 element table). Note, however, that the

look-ahead algorithm cannot be used on sequences containing degenerate

codes. Several displays and printouts are possible; Fig. I and 2 show two

examples of the restriction sites search printout: a restriction map and

plasmid circular restriction map.

Fast alianment of short seauences The special type of problem we have been

considering is the following one. One often searches for the occurence of a

given short sequence, say up to 20 bases, within a longer one, several

hundreds or thousands of bases. An example of such a problem is the search

of potential regulatory (protein binding) sequences in promoters. The

uncertainty about such sequences makes it advisable to allow some mismatchs.

Furthermore, it would be of great help if the search could be also performed

while allowing some gaps. Let us consider the following example. The

sequence ABCDEFGHIJ would not be detected whenever sequences such as

ABCDEGHIJ (one base is missing) or ABCDEXFGHIJ (one extra base) are

585

Nucleic Acids Research

Pst X 3669

9,1 13462 \t%}i

pBR322

B:~~~~~~~~~~~~~~~~~~~~~~-116+|_,3 Bgl I
4363 base pai rs 1

53(3
HgiE 11 3i56

Afi III 2475

ha1 19Z

Fig. 2. Circular restriction map of pBR322 sequence. In this example are
included all restriction sites appearing three times or less (unique sites
are printed in bold face). Computation and printing of such maps are long
due to the large number of trigonometric functions necessary (5 to 10
minutes). This printout (as fig. 1) is obtained on an Apple Imagewriter
printer.

encountered unless allowing 5 mismatchs. Such a degree of freedom is

unpractical since non significant homologies would be too numerous. The

solution is therefore to slide sequence s along S and, for every position of

s, search for a possible alignment with a maximum number k of gaps and/or

mismatchs.

The search for an alignment of two sequences is usually done using the

algorithm introduced by Needleman and Wunsh (6) (hereafter referred to as

the NW algorithm). Successive variations adapted to specific cases have been

proposed (7-10) that lead to the following choice: 1- the original NW

algorithm always gives the best alignment but is time consuming and requires

a large storage capacity 2- less time consuming algorithms may miss the

586

Nucleic Acids Research

s s

a b c A B C D E F G H

ABCDEFGH 0 1 2 3 45 6 7 8
a :::I :: A A A I x

...ABCD--GHIJKL... B B B 2. x

c c c 3 x.
ABCDEFBH D D 0 4.. x xx x . .

b ::::M:z G E P 5. x .x . x.
...ABCDEFGHMN... H F D 6 . . . x. x . x a

I G E 7.... x . x .
ABC--DEFGH J H F 8. . x . x b

c ::: ::::: K M G 9 x .

...ABCOPDEFGH... L N H 10.. x c

Fig. 3. A sequence s of n=8 elements ABCDEFGH is looked for along S with a
maximum gap number of k12. A window of n+k=10 elements is slidded along S
and the alignment with s tested for every position. The two sequences are
arranged to define a matrix as shown. Three particular cases are illustrated
with the corresponding paths indicated in the matrix: a/ 2 gaps in S, b/
perfect match - no gaps, c/ 2 gaps in s.

best possible fit. An elegant solution has been proposed by Fickett (11),

the main idea being to reorder the computation of the distance matrix so

that only distance below a fixed value are to be computed. In the present

case, we search recursively for the possible alignment of a sliding sequence
s along a longer one S. The usual result of such a starch is that s will be

found only a few times, once or not at all. Therefore, in order to speed up
the complete search over S, it is advisable to detect as quickly as possible
that the alignment is NOT possible. Performing the complete NWI algorithm
when the alignment is possible will not be too time consuming since such

cases are rare and s is a short sequence. Unfortunately the algorithm
proposed by Fickett (11) requires many manipulations of the i and i indices

of the distance and path matrices which are not easy to program in 6502
machine language. We have therefore devised a simpler procedure that stops

the computation of the matrices as soon as the allowed number of gaps or

mismatchs is surpassed.
A brief description of the algorithm is given below. Alignment is

searched between s (s(1),. , s(n)) and S (S(D1). , 9(N)), n (< N,
first with s(1) aligned with S(1), then with S(2) up to the end of S. For

every position of s the distance and path matrices are computed (see ref. 11

for the definition and computations of these two matrices) and k gaps or
mismatchs are allowed. Fig 3. shows that the size of the matrices has to be
(lIn+k)*(.n) in order to support the case where all gaps are found in s.

587

Nucleic Acids Research

Since we wish the whole s sequence included in the alignment, all paths

should end in the rightmost column. The distance between two alignments is

computed using a penalty of 1 for every gap or mismatch, however a mismatch

is always preferred to a gap. The classical NW algorithm is used to compute

successive comp e te rows of the distance matrix while recording two

characteristic values dr and dc defined as follows:

- dr is the least distance found in the current 1 row: dr- min(d(l,j) j=1 to

n)

- dc is the least distance found up to i=l in the rightmost column: dc=

min(d(i,n) i1I to 1)

fter each row as been computed, it is decided whether the computation

should be

1/ resumed if dr is still =< k (the computation then proceeds to the next

row unless the end of the matrix has been reached)

2/ given up if dr > k and dc > K (no path ending in the rightmost column

with distance less than k exists)

3/ stopped if dr > k but dc =< k (a path ending in the rightmost column

exists).

One advantage of this procedure is that there is no need of reinitializing

the distance or path matrix between two successive positions of s. The

corresponding 6502 machine code is 442 bytes long. Runtime depends upon the

number of gaps allowed. For example the sequence AAACCCGGGTTT was added at

the end of the pBR322 sequence and the search for this sequence with

allowance of 1,2 or 3 gaps or mismatchs allowed proceeds at a speed of 6.2,

9.4 or 13.6 s/kilobase, respectively. If the accelerating algorithm

described above is not used, the run times become 28, 30 and 33 s/kilobase.

The maximum length n of s has been set to 36 and the value of k (number of

gaps or mismatchs) is limited to n/2. The S file may be up to 9999 bases. 1I

gaps are not allowed, the program switches to a classical search algorithm

and the search for the above sequence needs only 0.5 s/kilobase with 3

mismatchs.

Fast dot matrix analysis The criterium chosen to plot the dot matrix is the

simplest one: two windows of length 1 are slidded along each of the two

sequences to be compared and one point is plotted whenever k bases over 1

are found to match (12). Protein sequences in one letter code can also be

compared. The dot matrix is computed row by row and printed out every eight

rows; this insures a minimal core memory space. The binary code is 192 bytes

long. The graphic printout uses a 72*72 dot/inch accuracy and examples can

588

Nucleic Acids Research

be found in ref. 1. A 500*500 protein matrix with a 7/21 stringency is

computed and printed in 3 minutes. Run time increases as the product of the

lengths of the sequences compared: a 2000*2000 matrix is obtained in 20

minutes for a stringency of 10 bases matched out of 15 or 30 minutes for 15

bases out of 25.

The DNA and protein sequence analysis system that we have written has two

aims. 1- As a desktop instrument, the Apple lIe allows a quick interactive

search of DNA sequences. -The three examples given above show that the Apple

lIe, with its 8 bit 6502 microprocessor may run very fast when programmed

directly in assembly language (3,10). For pure search tasks, run times

obtained are up to 10 times better than that obtained on more recent 16 bit

machines programmed in compiled Basic (13-15). 2- The second orientation is

the production of documents for publications, posters or simply daily lab

use.

One of the most tedious tasks in DNA sequencing is certainly sequence

entering from gel reading. For this reason, the design of the editor has

been given great care. A short description of it is given below. The editor

can handle three types of sequences: 1- DNA sequences, 2- Degenerate DNA

sequences and 3- protein sequences in one-letter code. Upon further use of a

sequence, its type is recognized and the keyboard is automatically
restricted to the allowed letters. A file is presented on the screen one

page at a time, a page is 5*80 bases long, plus the first line of the next

page. One can move from page to page or inside a page using the four arrow

keys; immediate insertion or deletion at the cursor position is possible as

well as immediate strand exchange. DNA sequences can be entered with the

A,C,G,T keys or using the 'special keyboardm: in this mode the keyboard is

reprogrammed so that the A,S,D,F keys (for the left hand) and the J,K,L,;,

keys (if the right hand is used) act as A,C,G,T. This allows a single user

to type in the sequence while reading it without the need of looking at the

keyboard.

Hardware reouirements Apple IIe with 80 columns card, Apple Imagewriter
printer (driven with an Apple Superserial card) and two 5' 1/4 floppy disk

units. The program resides in disk I and the data in disk 2. All runtime
examples given above are obtained with the serial 1 Mhz 6502 processor.

ACKNOWLEDGMENTS I wish to thank P. Cottre lite for producing the loads of DNA
sequence whose analysis inspired me to create this program. I thank F.
Dardel for helpful discussions about alignment problems, C. Mann for
correcting the manuscript and A. Sentenac for enthousiastic support.

589

Nucleic Acids Research

REFERENCES
I - Cottrelle,P., Thiel*,D., Price,V.L., Memet,S., Micouin,J-Y., Marck,Ch.,

Buhler,J-M., Sentenac,A. and Fromageot,P. (1985) J. Biol. Chem. 260
3090-3097.

2 - White,C.T., Hardies.S.C., Hutchinson,C.A. and Edgell,M.H. (1984)
Nucleic Acids Res. j1 , 751-766.

3 - Dardel,F. (1985) CABIOS 1 , 19-22.
4 - Cornish-Bowden,A. (1985) Nucleic Acids Research fl , 3021-3030.
5 - Roberts,R.J. (1985) Nucleic Acids Research 13, r165-r200.
6 - Needleman,S.B. and Wunsch,C.D. (1970) J. Mol. Biol. 48 , 443-453.
7 - Kruskal,J.B. (1983) SI4M review 2 , 201-237.
8 - Theory and practice of Sequence Comparison: Time-warps, String Edits,

and Macromolecules, David Sankoff and Joseph Kruskal, Eds.,
Addison-Wesley, Reading, Massachussets, 1983.

9 - Wilbur,W.J. and Lipmann,D.J. (1983) Proc. Nat]. Acad. Sci. 80
726-730.

10 - Dardel,F. (1985) CABIOS, submitted.
11 - Fickett,J.W. (1984) Nucleic Acids Res. 12 , 175-179.
12 - Heiter,P.A., Max,E.E., Seidman,J.G., Maizel,J.V. and Leder,P. (1980)

Cell 22 , 197-207.
13 - Oueen,C. and Korn,L.J. (1984) Nucleic Acids Res. 12 , 581-599.
14 - Schwindinger,W.F. and Warner,J.R. (1984) Nucleic Acids Res. 12

60 1-604.
15 - Lagrimini,L.M., Brentano,S.T. and Donelson,J.E. (1984) Nucleic Acids

Res. 12 , 605-614.

590

