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ABSTRACT
The complete 648 amino acid sequence of the human raf oncogene was

deduced from the 2977 nucleotide sequence of a fetal liver cDNA. The cDNA
has been used to obtain clones which extend the human c-raf-1 locus by an
additional 18.9 kb at the 5' end and contain all the remaining coding exons.

INTRODUCTION

Oncogenes are genes which have been identified because they cause cellu-

lar transformation either when naturally incorporated into a retrovirus or

when introduced into tissue culture cells by transfection. Since these genes

are evolutionarily well conserved, they are generally thought to have a nor-

mal role in the cell which is subverted by their reintroduction into the cell

in a form which alters their function or regulation. A normal function has

been identified for 3 of the approximately 25 known oncogenes. The erbB gene

is derived from the receptor gene for epidermal growth factor (EGF) (1), the

sis oncogene corresponds to a portion of the gene for platelet derived growth

factor (PDGF) (2) and the fms gene product has been shown to be related to

the CSF-1 receptor (3). The raf oncogene was originally isolated from a

murine transforming retrovirus, 3611-MSV (4). Subsequently the mil (or mht)
oncogene of the avian virus MH2 was identified as being the avian homologue

of raf (5, 6). The deduced amino acid sequences of these oncogenes are

distantly related to a number of oncogenes which encode tyrosine specific

kinases, as well as others which apparently do not (6, 7). Although the
viral raf and mil gene products do not have tyrosine specific. kinase acti-

vity, they have recently been shown to be associated with a serine-threonine-

specific kinase (6, 8). We have recently reported that there are two human

genes related to raf and mil (9). The functional gene, c-raf-1 contains

eleven exons which are homologous to mil, nine of which are also homologous
to raf. The second gene, c-raf-2, is a processed pseudogene. In order to
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further characterize the raf gene and its protein product, we have cloned

a human cDNA which contains all the coding sequence of the raf gene and

have used this DNA as a probe to identify the remaining 5 coding exons of

the c-raf-1 gene.

MATERIALS AND METHODS

Library Screening: Two human cDNA libraries, one derived from fetal

liver mRNA (provided by E.F. Fritsch) and one from placental mRNA, in the

XgtlO vector were screened using a raf-specific portion of the cloned

3611-MSV virus (the 0.75 kb XhoI-SstII fragment) as probe (4). Filters were

hybridized in 3X SSC at 60°C and washed at 1X SSC at 60C. Genomic clones

were obtained by screening partial EcoRI and HaeIII-AluI libraries in Charon

4A (10) using the 0.9 kb EcoRI-SalI fragment from the 5' end of the 2.9 kb

liver cDNA clone.

RESULTS

Characterization of cDNA Clones

Screening the fetal liver cDNA library with raf specific probe yielded

two large clones (2.98 and 2.89 kb). These clones are only slightly smaller

than the 3.4 kb raf message which has been observed in numerous tissues

(J. Cleveland, personal communication) and contain the complete coding

sequence. Similar but shorter clones were also isolated from the placental

library. Upon analysis, two of the placental clones were found to contain

intron as well as exon sequences.

The sequence of the long liver cDNA clones, as shown in Figure 1,

contains a single large open reading frame from nucleotides 121 to 2073

followed by an untranslated region of 905 nucleotides which ends in a

poly(A) stretch of 9 nucleotides. This poly(A) stretch is preceded by two

AATAAA sequences which could serve as polyadenylation signals (11). To

confirm that the apparent poly(A) sequence is not due to priming of the

cDNA from an A-rich sequence of the gene, we have compared the cDNA sequence

with the sequence of the corresponding region of the human c-raf-I gene.

Figure 1. The nucleotide sequence of raf cDNA and the deduced amino acid
sequence of the raf protein. The bottom two lines show the sequence of
the 3' end of the human c-raf-1 gene (9) aligned with the 3' end of the
cDNA. The EcoRI site in c-raf-1 is at 40.5 kb in Fig. 2. The presumptive
ATP binding site is located near nucleotide 1200 and the majority of the
amino acid homology with other kinases lies between nucleotides 1480 and
1773. The first nucleotide of each exon is indicated by an asterisk above
the sequence.
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Figure 2. Restriction map of the human c-raf-1 locus derived from overlapping
A phage clones. Clones X13 and X2 have been previously described (9).
The positions of four phage clones and the exons which they contain are shown
above the map. The 14.4, 10.3, and 8.4 kb EcoRI fragments but not the 3.0
and 2.5 kb fragments hybridize to Alu family repeated sequences [BLUR8 (17)].

The sequence alignment shown in Figure 1 demonstrates that the gene has the

sequence AGGTGTAAT in place of the poly(A) and thus the poly(A) stretch of

the clone represents the true poly(A) of the message. The 1953 nucleotide

open reading frame is the only open reading frame of more than 280 nucleo-

tides and coincides with the reading frame of the viral raf and mil proteins.

Its sequence has been confirmed by sequencing the corresponding 16 exons

of the human c-raf-1 gene (see below). The cDNA thus encodes the complete

648 amino acid raf protein with a predicted molecular weight of 73023
daltons. This result extends the amino terminal of the sequence known

from v-mil by 267 amino acids. However, this additional sequence has no

significant homology to protein sequences in the National Biomedical

Research Foundation Protein Data Bank. As judged by the criterion of

Kyte and Doolittle (12), the complete protein contains no extensive hydro-

phobic regions which would be candidates for transmembrane regions. This

characteristic is consistent with the observation of a 75000 molecular

weight raf protein primarily in the cytosolic fraction of normal rat

cells (13).
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Structure of the c-raf-1 Gene

The availability of a nearly full length cDNA clone allowed us to

extend the characterization of the 5' end of the c-raf-l gene beyond the

region of homology to v-mil. Using the 5' portion of the cDNA as probe we

have isolated two additional genomic clones, AHR40 and XHR70, from

partial EcoRI and partial HaeIII-AluI libraries, respectively. These clones

extend the 5' end of the restriction map of the locus by 18.9 kb (Fig. 2).

The exons in these clones were located approximately by hybridization of

cDNA probes to restriction digests of the clones and the appropriate regions

were sequenced to precisely identify the exons. Five additional exons were

identified which account for all the coding sequences. The intron boundaries

all contain characteristic splice acceptor and splice donor sequences (13).

Their positions have been indicated on the map of the genomic clones (Fig. 2)

and the sequence of the cDNA (Fig. 1). The exon which contains the first

103 nucleotides of the cDNA sequence is not contained within these clones.

Although there are about 500 nucleotides of mRNA unaccounted for in the

genomic clones, we have assumed for the purpose of numbering the exons that

there is only one additional exon which contains all but 26 nucleotides of

the 5' untranslated sequence. The structure of the gene has been confirmed

by the detection of the expected bands in genomic blots of human DNA using

the cDNA as probe (not shown).

DISCUSSION

We have characterized a nearly fully length cDNA which contains the

entire coding sequence of the human raf oncogene. Taking advantage of the

HgiAI site which spans the second and third codons of the coding sequence

we have begun an attempt to express the complete protein in E. coli. If

substantial amounts of protein can be produced it should be very useful in

characterizing the function of the gene and in verifying that the raf

protein is a serine-threonine specific kinase. The cDNA has also allowed us

to identify all the coding exons of the human c-raf-1 gene. This informa-

tion should be useful in characterizing rearrangements of the gene in human

tumors. Five transforming variants of the raf gene have been described,
all apparently being truncated at the amino end. The viral raf and mil

sequences in the transforming viruses 3611-MSV and MH2 begin within exons

9 and 7 of the mouse and chicken genes, respectively, and extend beyond the

termination codon in exon 17. A promoter insertion activated form of the

mouse gene has been described (14) in which a retroviral long terminal
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repeat sequence was inserted between exons 5 and 6. In addition, two trans-

forming raf DNAs have been identified by transfection of DNA derived from

human humors (15, 16). In the first of these, obtained from a stomach tumor,

the transforming DNA has been cloned and partially mapped with EcoRI and

Bam HI. Comparison of the map of this DNA with Figure 2 indicates that the

EcoRI site at 29.2 kb and the cluster of Bam sites at 28-32 kb (Fig. 2) is

present. The 10.3 and 8.4 kb EcoRI fragments on either side of this site

in our map agree well with the 10.0 and 8.0 kb fragments of the transforming

DNA suggesting that exons 7-13 are present. However, the EcoRI site at

40.6 kb (Fig. 2) is absent in the transforming DNA suggesting a rearrange-

ment near the poly(A) site. The EcoRI fragment immediately 5' of the 10.0 kb

fragment in the transforming DNA is a 13.0 kb fragment containing two Bam

sites while our clones have 0.3, 4.2, and 14.4 kb EcoRI fragments with no

Bam sites. Thus, the transforming DNA is also rearranged at the 5' end.

If the agreement between the 10.0 and 10.3 kb EcoRI fragments is not for-

tuitous, this would place the rearrangement near exons 6 or 7. The second

transforming DNA, obtained from a glioblastoma, has only been characterized

by hybridization to secondary and tertiary transformants. These transformants

all contain human EcoRI fragments of 10, 8, 5, and 4.2 kb detected with a

human Alu-family repeated sequence probe. Three of these fragments agree

well with the 10.3, 8.4 and 4.2 kb fragment of our clones while the 5 kb

fragment does not. Presumably the 5 kb fragment represents a rearrangement

in the vicinity of exon 3 or 4. In addition a v-raf probe (containing exons

10-17) detected HindIII fragments of 3.5 and 1.9 as expected from Figure 2

but a 4.0 kb band instead of the 6.8 kb band of normal human DNA. The

detection of a Pst 5.65 kb band which maps at 36.3 - 41.9 on Figure 2 (not

shown), indicates that the rearrangement of the 6.8 HindIII band occurs

1.4 - 4.8 kb 3' of the poly(A) site (40.5 kb on the map). Thus both trans-

forming DNAs appear to be rearranged at both the 5' and 3' ends. More

precise characterization of the rearrangements should now be possible.
Nevertheless, since all the transforming variants of the raf gene appear

to be truncated at the amino terminus, it is tempting to speculate that

this region (exons 2-9) represents a regulatory domain, the loss of which

allows inappropriate activity of the apparent kinase domain (exons 10-16).
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