

Supplementary Figure 1. **a**) **Three dimensional structure of HLA-E** and the position of the mutation that results in disruption of CD8 binding to HLA-E (or Qa-1) molecule. B6-Qa-1(D227K) knock-in mice were generated by mutating the amino acid position of 227 in CD8 binding alpha 3 domain of Qa-1 molecule from aspartic acid (D) to lysine (K). Expression of cell surface Qa-1 by activated CD4 cells from B6-Qa-1(D227K) knock-in mice was indistinguishable from B6-(Qa-1WT) mice ⁹. Expression of the B6-Qa-1(D227K) mutation by L cells or activated CD4 cells failed to target these cells for lysis by Qa-1-restricted cytolytic T cells, while Qa-1/Qdm-dependent resistance of activated B6-Qa-1(D227K) CD4 cells to lysis by NKG2A⁺ NK cells was unimpaired in vitro and in vivo ⁹.

b) **Development of autoimmune disease in Qa-1 D227K mice.** The Qa-1 mutation delineated in **a** develop the autoimmune disease characterized by tissue-specific autoantibodies, invasion of non-lymphoid tissues by monocytes/ lymphocytes and lethal glomerulonephritis. This disorder is associated with enhanced numbers of T_{FH} cells, activated lymphoid follicles, increased GC B cells, and is accelerated by viral infection.

c) Proposed mechanism of CD8⁺ Treg activity. Activation of follicular helper T cells stimulates a subpopulation of Qa-1-restricted CD8⁺ T cells that express the indicated surface molecules. These cells, termed CD8⁺ Treg, may mediate perforin/ IL-15 dependent elimination of target Qa-1⁺ T_{FH}.

Supplementary Figure 2. Qa-1 expression by Th cell lineages.

Spleen cells from 6 week old naïve and KLH/CFA-immunized mice were analyzed for Qa-1 expression on cell surface. IFN γ^+ IL-4⁻ cells were defined as Th1 cells; IL-10 or IL-4 producers were defined as Th2 cells; IL-17 producers were defined as Th17 cells. T_{FH} cells were identified by ICOS and B200 expression. Numbers shown represent mean fluorescence intensity (MFI).

Supplementary Figure 3. Immune response of B6-(Qa-1^{wT}) and B6-Qa-1(D227K) mice upon LCMV-Armstrong infection. 6m old WT B6 and B6-Qa-1(D227K) mice were infected i.p. with 10⁶ PFU LCMV-Armstrong. At day 8, mice were reinfected i.p. with 10⁵ PFU LCMV-Armstrong. At days 8 and 13, sera from naïve and LCMV-Armstrong-infected WT and B6-Qa-1(D227K) mice were analyzed for the production of LCMV specific antibodies (a). b and c) Splenocytes from naïve or LCMV-Armstrong infected WT or B6-Qa-1(D227K) mice were analyzed for immune cell composition. Spleens from LCMV-Armstrong infected WT or B6-Qa-1(D227K) mice were analyzed for GC formation by immunohistochemistry (b, left panel). Shown are representative B cell follicles stained for B220⁺ cells (red) and GC B cells (GL-7⁺, green). Increased size of GC and loose distribution of GL-7⁺ cells in B6-Qa-1(D227K) mice suggest robust B cell activation and advanced stage of GC reaction characterized by light zone dominant GC phenotype. An ~5-fold increase in GC phenotype B cells (B220+Fas+) (b, right panel) and 20-fold increase in CD11b⁺ cells (c) was detected in spleen of B6-Qa-1(D227K) mice upon LCMV-Armstrong infection compared to B6-(Qa-1^{WT}) mice. (d) 6-8 week old WT B6 and D227K mice were infected i.p. with 10⁶ PFU LCMV-Armstrong. At day 8, mice were reinfected i.p. with 10⁵ PFU LCMV-Armstrong. 28 days after primary infection, serum from LCMV-infected WT B6 and D227K mice was analyzed for the production of antibodies specific for dsDNA. Data represent mean ± SEM. (3-6 mice/group)

Supplementary Figure 4. Suppression of high affinity Ab response by ICOSL⁺ CD8 cells, but not by total CD8 or ICOSL⁻ CD8 cells:

Rag2^{-/-} mice were transferred with 2×10⁶ naïve WT B cells along with 1×10⁶ naïve WT or B6-Qa-1 D227K CD4 cells. In addition, *Rag2*^{-/-} mice were given either unseparated CD8 cells or ICOSL⁺ enriched and ICOSL⁻ CD8 cells from KLH/CFA-immunized mice. Immediately after cell transfer, *Rag2*^{-/-} mice were immunized i.p. with 100 μ g NP₁₉-KLH in CFA. Mice were reimmunized i.p. with 50 μ g NP19-KLH in IFA and the NP specific Ab response was measured by ELISA.

Supplementary Figure 5. Expression of Qa-1 by naïve and GC B cells.

WT B6 mice were immunized with 100 μ g KLH in CFA. Seven days after immunization, splenic B cells were analyzed for Qa-1 expression. Levels of Qa-1 expression on naïve and activated B cells (GC B cells) were analyzed (**upper panel**). Levels of Qa-1 expression by class-switched and IgM⁺ GC B cell were compared (**lower panel**).

Supplementary Figure 6. Ab response after transfer of B cells, CD4 cells and CD8 cells into $Rag2^{-/-}$ mice.

 2×10^{6} naïve B cells from 2 month old B6.Qa-1 WT (upper panel) or B6.Qa-1(D227K) mice (lower panel) were transferred along with 1×10^{6} CD25⁺ depleted CD4 cells from B6.Qa-1(WT) or B6.Qa-1(D227K) mice. Titrated numbers of CD44⁺ CD8 cells isolated from KLH/CFAimmunized mice were given to *Rag2^{-/-}* mice. Immediately after transfer, *Rag2^{-/-}* recipients were immunized i.p. with 100 µg KLH in CFA. At day 10, mice were reimmunized i.p. with 50 µg KLH in IFA. At day 17, NP-specific Ab responses were measured by ELISA, as summarized below:

<u>B cells</u>	CD4 cells	<u>Suppression</u>
WT	WT	+++
WT	D227K	_
D227K	WT	+++
D227K	D227K	_

Target cells of Qa-1-restricted suppression

Supplementary Figure 7. Suppression of T_{FH} cells by in vitro stimulated ICOSL⁺ CD8 cells.

Rag2^{-/-} mice were given 2×10⁶ naïve B cells from WT mice and 10⁶ CD4 cells from either B6.Qa-1(WT) or B6.Qa-1(D227K) mice. After injection of 2×10⁵ in vitro-stimulated ICOSL⁺ CD8⁺ cells into each *Rag2*^{-/-} recipient, mice were immunized i.p. with 100 μ g NP₁₉-KLH in CFA and reimmunized i.p. with 50 μ g NP₁₉-KLH in IFA at day 12. Spleen cells from different groups of *Rag2*^{-/-} hosts were analyzed for levels of **a**) follicular helper T cells (CD4⁺ICOS⁺CXCR5⁺) and **b**) GC B cells (B220⁺Fas⁺) by FACS at day 28 after primary immunization. Mean cellularity ± SEM is shown (n=3-5/group).

Supplementary Figure 8. Autoantibody generation after transfer of B, CD4 and CD8 cells into $Rag2^{-/-}$ hosts.

 2×10^6 naïve B cells from 2 month old B6.Qa-1(WT) mice (**a**) and B6.Qa-1(D227K) mice (**b**) were transferred along with 10^6 CD25⁺ depleted CD4 T cells from WT or D227K mice. 5×10^5 CD44⁺ CD8 cells isolated from KLH/CFA-immunized mice were transferred into *Rag2^{-/-}* hosts. Immediately after transfer, mice were immunized i.p. with 100 µg KLH in CFA. At day 10, mice were reimmunized i.p. with 50 µg KLH in IFA. At day 21, anti-dsDNA Ab was measured by ELISA.

Supplementary Figure 9. T_H lineage differentiation in vitro: Cytokine profiles.

T_H1: 5 ng/ml rmlL-12 and 10 μg/ml anti-IL-4 Ab, T_H2: 10 ng/ml rmlL-4 Ab, 10 μg/ml anti-IL-12 Ab, 10 μg/ml anti-IFNγ Ab, T_{FH}: 50 ng/ml IL-21, 10 μg/ml anti-IL-4 Ab, 10 μg/ml IFNγ Ab, 20 μg/ml anti-TGFβ Ab and 20 ng/ml rmlL-6, T_H17: 3 ng/ml TGFβ, 20 ng/ml rlL-6, 20 ng/ml rlL-23, 10 μg/ml anti-IL-4 Ab, 10 μg/ml anti-IFNγ Ab, 10 μg/ml anti-IL-12 Ab. At day 5, cells were harvested and 10⁵ cells were restimulated with 0.5 μg/ml OT-II peptide for 24h. Cell supernatants were subjected to cytokine analysis by ELISA.

NP specific Ab response

Supplementary Figure 10. Transfer of in vitro differentiated T_H sublineages and Ab response.

Naïve OT-II cells were differentiated into T_H1 , T_H2 and T_H17 cells using following protocol: 1 µg/ml OT-II peptide was used. T_H1 : 5 ng/ml rmIL-12 and 10 µg/ml anti-IL4 Ab, T_H2 : 10 ng/ml rmIL-4 Ab, 10 µg/ml anti-IL-12 Ab, 10 µg/ml anti-IFN γ Ab, T_{FH} : 50 ng/ml IL-21, 10 µg/ml anti-IL-4 Ab, 10 µg/ml anti-IFN γ Ab, 20 µg/ml anti-TGF β Ab and 20 ng/ml rmIL-6, T_H17 : 3 ng/ml TGF β , 20 ng/ml rIL-6, 20 ng/ml rIL-23, 10 µg/ml anti-IL-4 Ab, 10 µg/ml anti-IE-N γ Ab, 10 µg/ml anti-IL-12 Ab. At day 5, cells were harvested and 1×10⁵ cells were transferred into $Rag2^{-/-}$ recipients along with 2×10⁶ WT naïve B cells and 2×10⁵ sorted CD44⁺ CD8 cells from KLH/CFA-immunized B6 donors. Immediately after transfer, $Rag2^{-/-}$ mice were immunized i.p. with 100 µg/ml NP₁₃-OVA in CFA. 15 days later, NP₂₃ binding IgG1 responses were measured by ELISA.

Mechanism of Qa-1-restricted suppression: Contribution of perforin to Qa-1-restricted inhibition

Supplementary Figure 11. Perforin dependent suppression of T_{FH} by CD8 Treg:

Ab response after transfer of B, CD4 and CD8 cells into $Rag2^{-/-}$ mice. 2×10⁶ WT naïve B cells were transferred along with 1×10⁶ CD25⁺ depleted CD4 cells from B6.Qa-1(WT) or B6.Qa-1(D227K) mice into $Rag2^{-/-}$ hosts. CD44⁺ cells isolated from KLH/CFA immunized WT or *Prf1^{-/-}* mice were transferred into $Rag2^{-/-}$ hosts. Immediately after cell transfer, $Rag2^{-/-}$ recipients were immunized i.p. with 100 µg NP₁₉-KLH in CFA. At day 10, mice were reimmunized i.p. with 50 µg NP₁₉-KLH in IFA and NP specific Ab responses were measured by ELISA seven days later (**a**). (**b**) Enumeration of OT-II and T_{FH} cells in $Rag2^{-/-}$ recipients: Naïve WT OT-II (5×10⁵) were transferred along with CD8 cells (7×10⁵) from immune donors into $Rag2^{-/-}\gamma c^{-/-}$ mice, followed by immunization with 100 µg NP₁₃-OVA in CFA and boosting with 50 µg NP13-OVA in IFA at day 10. On day 18, the numbers of OT-II cells (V_β5⁺CD4⁺) and OT-II cells with a T_{FH} phenotype (ICOS⁺CD200⁺CD4⁺) in spleen were enumerated by FACS analysis.

Supplementary Figure 12. Memory and regulatory CD8 T cells in WT and IL-15^{-/-} mice: WT B6 and IL-15^{-/-} mice were immunized i.p. with 100 μ g KLH/CFA. 38 days later, the number of CD8 memory subsets and ICOSL⁺CXCR5⁺ CD8 cells was analyzed by FACS. Central memory (T_{CM}) and effector memory (T_{EM}) CD8 cells were defined according to differential expression of CD44, CD62L, CCR7 and KLRG-1.

Supplementary Figure 13. Follicular localization of CD8 cells:

Rag2^{-/-} mice were transferred with 3×10^6 WT B cells and 2×10^6 WT CD4 cells. Mice were immunized with 100 µg NP₁₉-KLH. At day 10 post immunization, 1×10^6 sorted CD44⁺ CD8 cells isolated from KLH/CFA-immunized CD45.1 syngeneic mice were transferred into *Rag2*^{-/-} hosts. Spleens from these mice were harvested at day 5. Localization of GC B cells, CD4 cells and CD8 cells was analyzed by staining spleen tissue sections with GL-7 and anti-CD45.1 or GL-7 and anti-CD4 Abs (**a**). The percent of CD8 cells that migrated into B and T cell zones was quantified by counting cells within the GL-7⁺ area, the inner CD4 T cell area and outer CD4 T cell zone. The inner T cell zone was defined by the area with sporadic distribution of B cells. Outer T cell area was defined by the outer layer of the CD4⁺ T cell zone with no B cells (**b**).

Supplementary Figure 14. Follicular localization of CD8 cells:

Rag2^{-/-} mice were transferred with 3×10^{6} WT B cells and 2×10^{6} WT CD4 cells before immunization with 100 mg NP19-KLH. Three days later, 0.5×10^{6} sorted CXCR5⁺ CD8 cells (>99%pure) from KLH/CFA-immunized mice were CFSE labeled before transfer into *Rag2*^{-/-} hosts and harvesting 24h later. Localization of B cells and CD4 cells in splenic tissue sections was determined using anti-B220 and anti-CD4 antibodies. Localization of CXCR5⁺ CD8 cells was detected by green fluorescence (CFSE). Two independent follicles in consecutive sections are shown (**a**). Quantification of CD8 cells within or outside of follicular areas is shown (20 different follicles were analyzed) (**b**).

Supplementary Figure 15. Analysis of expression of canonical CD4 Treg markers. ICOSL+CXCR5+ CD8 T cells from B6 mice one week after immunization with 100 μ g KLH/CFA were examined for expression of CTLA-4 (a), GITR (b), CD25 (c) and IL-7R α (CD127) (d) using appropriate antibodies and isotype controls. ICOSL+CXCR5+ CD8 T cells from FoxP3-GFP knockin mice (immunized with 100 μ g KLH/ CFA i.p. as above) were also examined for FoxP3 by measuring GFP expression (e). The level of GFP expression by CD4+CD25+ cells from FoxP3-GFP mice (positive control) is shown by comparing with CD4+CD25- cells (negative control) (f). Groups a-e are gated on ICOSL+CXCR5+ CD8 cells. The level of CD127 expression by ICOSL+CXCR5+ CD8 cells was compared to ICOSL-CXCR5- cells (d).

Phenotype of in vitro differentiated OT-II T_{FH} cell (no IL-6 supplementation)

Supplementary Figure 16. Phenotype of OT-II cells confirmed under T_{FH} conditions. Naïve OT-II cells (CD44⁻CD62L^{hi}) from WT and D227K mice were stimulated with 1 µg/ml OT-II peptide, 50 ng/ml IL-21, 10 µg/ml anti-IFN γ , 10 µg/ml anti-IL-4 and 20 µg/ml anti-TGF β Abs for 5 days. Surface expression of ICOS, OX2 (CD200), BTLA, PD-1 and Qa-1 was analyzed by FACS.

Phenotype of in vitro differentiated OT-II T_{FH} cells

Supplementary Figure 17. Phenotype of OT-II cells confirmed under T_{FH} conditions.

a) Naïve OT-II cells (CD44⁻CD62L^{hi}) from WT and D227K mice were stimulated with 1 µg/ml OT-II peptide, 50 ng/ml IL-21, 20 ng/ml IL-6, 10 µg/ml anti-IFN_γ, 10 µg/ml anti-IL-4 and 20 µg/ml anti-TGF_β Abs for 5 days. Surface expression of ICOS, OX2 (CD200), BTLA, PD-1 and Qa-1 was analyzed by FACS. **b**) At day 5, cells were harvested and 1×10⁵ cells were restimulated with 1 µg/ml anti-CD3 Ab for 24 hrs. Production of IL-21 was compared in T_{FH} culture in the presence or absence of IL-6. IL-6 supplementation did not affect the surface phenotype or IL-21 cytokine response of OT-II T_{FH} cells.