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1 Computational evolution

1.1 Evolutionary dynamics

Genetic networks are evolved by repeated rounds of selection, growth and mu-
tation. Typically 40 networks are followed in parallel. At each step of the
algorithm, equations corresponding to the networks are integrated, and a ” fit-
ness” or ” scoring” function is computed. Networks are then ranked according
to this fitness; the best half is retained, then each network kept is copied and
mutated. Mutations are of two types : mutations changing the kinetic con-
stants within the networks or mutations changing the topology of the network,
i.e. adding/removing new proteins or interactions. At each generation, a given
mutation has a pre-determined probability to happen. Mutations changing ki-
netic parameters in the network are assumed to have a higher probability of
occurrence than mutations changing network topologies, and among the latter,
the probability of removing existing interactions is higher than probability of
adding new interactions. This choice of probabilities corresponds to a biologi-
cally realistic limit for which the most probable evolutionary event is to modify
existing interactions, the second most probable event being to delete interac-
tions and creating new ones is the least probable. Results of evolution described
in this chapter are largely independent of the precise choice of mutation rates
as long as simulations are run in this limit.

After the mutation step, the entire process is iterated. A “generation” is one
iteration of this selection/growth/mutation process, and corresponds to many
generations in a real organism since we are only concerned with mutations in
the one network under study. This procedure favours the evolution with time
of network topologies and parameters satisfying the fitness function.

1.2 Fitnesses

Mathematical details of the fitnesses are given in the main text, we schematically
summarize them in the following.

1.2.1 Fitness A

Variables (ie genes) in the network are designated as an Input and an Output.
The dynamics of the Input is completely prescribed and the fitness is computed
from the behavior of the Output. For each network, we want to select for both
entrainment and temperature compensation. To do so, we define a time interval
(typically 12 periods of the desired period of the oscillator) and simulate network
with different Input dynamics :



e we first simulate a network with an oscillating Input over the total time
window (dynamic 0). We further include several random phase shifts of
the Input dynamics during the first cycles.

e then we simulate a network with an oscillating Input identical to dynamic
0 for the first third of the window, then exponentially decaying towards n
different constant values between 0 and 2 (dynamic 1 to n)

Fitness is then computed as follows: for dynamic 0, we compute the absolute
value of the correlation between Input and Output. Then for dynamics 1 to n,
we compute the correlation of the Output for dynamics ¢ with the Output for
dynamics 0. We averaged all these correlations to compute the fitness. If all
these correlations are maximum, it means that there is perfect entrainment
(because the random phase shifts disfavor simple memory of the phase) and
period compensation (because dynamics 1 to n impose oscillations similar to
dynamic 0 for constant Inputs of varying levels). This fitness was used to evolve
the networks displayed in Fig. 4.

1.2.2 Fitness B

We used an other scheme to relax the assumption that Output shape should be
strongly correlated to Input shape :

e we kept dynamics 0 as defined.

e then we simulate a network with an oscillating Input identical to dynamic
0 for the first third of the window, then suddenly freezing it to n different
constant values between 0 and 2 (dynamic 1 to n)

We still compute absolute value of the correlation between Input and Output
for dynamics 0, but for dynamics 1 to n, we count the number of peaks of the
Output during the time window where Input is constant, and compute the
relative difference between the number of these peaks and the number of peaks
of the Input signal for dynamics 0. We add this term to the correlation for
dynamics 0. This imposes that the network is entrained but constrains much
less the shape of the free running limit cycle.

1.3 Code bloating and pruning

One characteristic of evolutionary simulations is the phenomenon of ” code-
bloat” : ”core” working networks are often embedded into bigger ones due to
past evolutionary history but without any functional roles. To identify the
most parcimonious sub-network accounting for a function, we use a pruning
evolutionary procedure : once a working network topology has been identified,
we run our evolutionary simulations in a mode were nodes are randomly pruned
and only networks keeping a constant fitness are selected. All networks displayed
in this chapter represent such core networks.



1.4 Numerical implementations

The latest version of our algorithm is implemented in Python, one of the most
convenient language for systems biology [2]. Networks are defined as bipartite
graph, connecting "species” (genes and proteins) to Interactions (transcription,
transcriptional regulations, protein-protein interactions, ...). Networks are en-
coded using the Networkx package [3] and customized classes defining parame-
ters for any interaction. The evolution algorithm per se (including growth and
mutations) is encoded in Python. However, Python itself appeared too slow
to actually integrate differential equations necessary to fitness computation for
each network, so a Python to C dynamical interpreter has been designed, which
takes as an input a network in Python and then generates a compiled C code
used to numerically compute the network behaviour. Equations are generally
integrated using an Euler algorithm, with a time-step chosen a priori to be much
smaller than any typical time-scale that could appear in the system. This fitness
computation process can be naturally parallelized.

2 More detailed properties of Network of Fig. 4

2.1 Relative period and fixed point value of network of
Fig.4 for different value

Table 1 gives the relative period and fixed point value for variable 1 for different
values of Input for network shown on Fig. 4.

2.2 Variability of Phase Resetting Curves

Figure S 1 presents PRCs of network of Fig. 4 for various perturbations and dif-
ferent values. Interestingly the PRCs have the same shape and actually overlap
for most of these perturbations for different Input values.

2.3 Simulation of mutants for network of Fig. 4

Figure S2 represents the relative period of the oscillator of Fig.4 for different
"mutants” simulating 2-fold individual variations of parameters. Interestingly,
most parameters have very little influence on the relative variation of the period
with the Input, while they can actually modify quite significantly the period
itself. This suggests that period compensation is a ”structural” property of the
network, relatively independent of the precise value of the parameters. The
most significant parameters influencing values of period are degradation rates
of species 2 and 3 (resp. dark and light blue on Fig.S2). The most significant
parameter perturbing period compensation is the coupling between Input and
species 1 (yellow parameter).



3 Dynamics of the Adaptive Mixed Feedback
Loop

Following [4] we consider the following Mixed Feedback Loop model (MFL) :

g = 0(1-g)—agA (1)
o= f(D)pr(1—g)—dr (2)
B = Br—~AB-é3B (3)
A = f(I)pa—yAB =544 (4)

where A, B are proteins and g models the activity of the promoter of gene b
whose message level is r. We assume that production rates of A and B depend on
the Input in a similar way via the term f(I). The production of B is decomposed
into several steps to provide a delay in the negative feedback on A. There would
be no qualitative change in the properties of the model if similar terms were
included for A. For simulations, we use § = 0.04,a = 0.001,p, = 5,6, =
0.02,p4 =100,y =1,8=3,0=0.1,f(I) = 1,64 = 0.01.

3.1 Adaptive steady state

The crucial assumption for adaptation is to assume that degradation 4 of A
is very small (i.e. negligible relative to the titration rate yB), as found by
computational evolution in [1]. At steady state, we then have :

0

g = ng*(A) (5)

o= s e ©
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B = S =B (7)

0 = f(Dpa—AFDBA) = F(D)(pa ~ B'(4)) ®

where g*(A),r*(A), B*(A) are pure functions of A and other parameters than
Input I) so that for A, we get, at steady state :

B*(A) = pa (9)

This implicit equations defines steady state for A, which is then independent
of the Input, demonstrating adaptation of the steady state with respect to the
Input. This can be seen on Figure 5 Panel C of the main paper.

3.2 Scaling of the limit cycle and period independence

Because of the titration yAB, proteins A and B can not coexist in this model at
the same time. A consequence is that the MFL limit cycle alternates between



two phases : a Phase [ where A >> B and a Phase II where B >> A. Complete
study of the limit cycle is presented in [4] and a summary of the argument is
detailed below. During Phase I, A is big and we can actually adiabatically
eliminate B and g which are very small, so that we find

= f()pr — 67 (10)
= f(I)pa—PBr—04A (11)

. s

(again, in that phase, dp is negligible relative to yA). During Phase II, B is big
and we can eliminate A which is negligible to get :

g = 0(1-yg) (12)
ro= f(I)pr(l - g) — 0T (13)
B = pr—f(I)pa—0pB (14)
We proceed to rescale X = r, A, B by the function f(I) : calling X = %
we immediately find for Phase I
Po= pr— 0, (15)
A = pa—pBi—d4A (16)
and for Phase II :
g 0(1—g) (17)
Fo= pe(l—g)—0,7 (18)
B = fBi—pa—0pB (19)

We have therefore completely absorbed the Input influence in the rescaling ;
neglecting the short transition zone between the two phases (which contributes
to the period only at higher order in 1/,/pa7, very small compared to the typical
period [4]), this analysis implies that, in a very similar way to the Goodwin
model as described in the main text :

e the limit cycle scales as f(I)
e the period is independent of I
e any multiplicative PRC is independent of I

We further check that the MFL network can be entrained by I (data not
shown).



4 Other examples of evolved networks

Many solutions were easily found by the evolutionary scheme described in pre-
vious sections. We picked up two other examples of networks evolved using
this algorithm, with associated scaled limit cycles and PRCs. Figure S3 gives
another example of network evolved with Fitness A. Figure S4 gives another
example of network evolved with Fitness B. Both networks have wide variation
of the limit cycle for at least one variable, period compensation, orbit scaling,
and associated PRC invariance. Thus Fitness B sometimes results in networks
with the scaling properties that were explicitly selected for under Fitness A.

5 Network equations

We provide MATLAB files containing ODEs for all networks presented in this
paper. The Input variable is the last argument of the functions.

Network of Fig.4

function ds=Fig4(~,s,s0)
%Function defining time derivatives for network of Fig. 4.
%Uses Utilities HillA and HillR, s0 is the Input

ds=zeros (4,1);

%degradation rates

ds (1)=-0.049678x*s (1) ;
ds (2)=-0.629237xs(2);
ds (3)=-0.533065%s(3) ;

ds (4)=-0.998394%s (4) ;

ds(1)= ds(1)+ 0.999444%HillR(s(3) ,0.196395,4.782197);
ds(3)= ds(3)+ 0.979918xHillA(s(2) ,0.367591,4.776183);

ds (2)= ds(2)4 0.631913%s0x%s (1) —0.214075%s(2);

ds(1)= ds(1)+ —0.631913%s0%s(1)+4+0.214075%s(2);
ds(4)= ds(4)+ 0.728435+s(1)#s(3) —0.174149%s (4) ;
ds(1)= ds(1)+ —0.728435xs(1)*s(3)+0.174149xs(4);

ds (3)= ds(3)+ —0.728435xs(1)*s(3)+4+0.174149xs(4);




Network of Fig.6

function odefun=Fig6(~ ,x,s0)

%Function defining time derivatives for network of Fig. 6.
%Uses Utilities HillA and HillR, s0 is the Input

odefun=zeros (7,1);

odefun (1)=—0.616633%x(1)+0.997857+Hil1R (x(4) ,0.014614,4.635085) xHil1lR (<=
x(7),0.441944,1.636007) —0.128611%s0%x (1) +0.638779xx(2) ;

odefun (2)=—0.017157%x (2) +0.128611xs0%x (1) —0.638779%x (2) ;
odefun (3)=—0.568141%x(3) +0.735827+«max(Hil1lA (x(2) ,0.443434,4.906333) ,+
HillA(x(7),0.184899,3.123139)) —0.355762+s0%x (3) +0.707227+x (4) ;

odefun (4)=—-0.340442%x(4)4+0.355762%s0*x(3) —0.707227xx(4) ;

odefun (5)=—0.178738%x (5) +0.506883%max (HillA (x (1) ,0.784509,3.597002) <
HillA (x(6) ,0.388452,0.925010)) —0.860478%s0%x (5) +0.245151%x (6) <>
—2%0.924989%x (5)*x(5) +2%0.546817*x(7) ;

odefun (6)=—0.618530%x(6)+0.860478%s0%x(5) —0.245151%x(6) ;

odefun (7)=—0.882519%x (7)+0.924989%x (5)*x(5) —0.546817+x(7) ;

Network of Fig. S3

function ds=FigS3(~,s,s0)

%Function defining time derivatives for network of Fig. S3
%Uses Utilities HillA and HillR, s0 is the Input

ds=zeros (6,1);

ds (1)=-0.017242xs(1);
ds (2)=—-0.682375%s(2) ;
ds (3)=—-0.274146%s(3) ;
ds (4) =—0.877576%s (4) ;
ds (5)=—0.725935xs(5) ;
ds (6)=—0.327922xs(6) ;

rate=0.999444xHillR (s (4) ,0.077706,3.873770)*HillR (s (5)+
,0.167392,4.960077) ;

ds (1)=ds (1)+rate;

rate=0.844962+«HillA (s (2) ,0.462754,4.936277)*HillR(s(6)<«
,0.303372,3.401030) ;

ds (3)=ds (3)+rate;

rate=0.980526+HillA (s (4) ,0.245517,2.393060) ;

ds (5)=ds (5)+rate;

rate=0.937099%s0xs (1) —0.969777xs (2);

ds (1)=ds(1l)—rate;
ds (2)=ds (2)+rate;




rate=0.994958xs (1) *s(3) —0.084167*s(4);

ds(1)=ds(l)—rate;
ds (3)=ds (3)—rate;
ds (4)=ds (4)+rate;

rate=0.969937%s (1) *s(5) —0.175595%5 (6) ;
ds(1)=ds(l)—rate;
ds (5)=ds (5)—rate;
ds (6)=ds (6)+rate;

Network of Fig. S4

function odefun=FigS4 (™ ,x,s0)

%Function defining time derivatives for network of Fig. S4
%Uses Utilities HillA and HillR, s0 is the Input

odefun=zeros (5,1);

odefun (1)=—0.765729%x (1) +0.969707«Hil1lR (x(4) ,0.032403,3.957494) >
—0.847064xs0xx(1)+0.534346*x(2);

odefun (2)=—0.071591%x(2)+0.847064%s0x*x (1) —0.534346%x(2) ;

odefun (3)=—0.050645%x (3) +0.877848+Hil1lA (x(2) ,0.245479,4.965232)«
—2%0.717585%x (3)*x(3) +2%0.058512%x(4) —0.313311%s0%x(3) +0.999867+x<+

(5);
odefun (4)=—0.751772%x(4)+0.717585%x (3)*x(3) —0.058512xx(4) ;
odefun (5)=—0.110169%x(5)+0.313311%s0*x(3) —0.999867*x(5) ;
Utilities

function a=HillA(x,y,n)
b=exp (nxlog(x/y));
a=b/(1+b) ;

function a=HillR(x,y,n)
b=exp (nxlog (x/y));
a=1/(1+b);
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Figure S 1: Families of PRCs for model of Fig.4 All PRCs are computed
by imposing a perturbation for 10 % of the period of a cycle. (A) Strong
degradation of species 1 (as described in main text) (B) Strong degradation of
species 3 (C) Strong degradation of species 4 (D) 4x increase of transcription
of gene 1 (E) 4x increase of transcription of gene 3 (F) 50% relative increase
of Input. The strongest departure from input (temperature) invariance is in
A since adding degradation to species 1 breaks the adaptation in the initial
adaptive system composed of species 0,1,2 in Fig. 3
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Figure S2: Relative period as a function of Input for simulated mutants
of networks in Fig. 4 Period 0 corresponds to absence of oscillation, periods
are computed relative to the original network for the reference Input value of
0.4. Individual period for each mutant can be different from the original net-
work, but for most mutants taken individually, period variation is comparable
to the original network. (Left) Parameters individually divided by 2. The most
significant relative difference (20 %) is for the parameter in dark blue which
corresponds to the degradation rate of the Output (species 2). (Right) Param-
eters individually multiplied by 2. The most significant relative difference (30
%) is for the parameter in yellow which corresponds to the coupling between
the input and the network, so effectively multiplies the input range by 2.

11



03 04 05 06 07 08 09 1
Input value

Variable 2
Variable 2 renormalized
o o o o o o o ©
N W s o ® N ® ©

o

=}

s

0 02 04 06 08 1
Variable 1 Variable 1 renormalized

D 1
1
0.87
038
0.76
= § 06 0.66
= —_
2] © :
2 g { 0.58
=]
g_ 2 04 | j0.51
- 0.44
x
0.39
02
0.34
0.3
0

0 0.2 0.4 0.6 0.8 1
Phase

Figure S 3: A scaling model evolved with Fitness A (A) Sketch of the
model. (B) Variation of the period as a function of Input. (C) Left : limit cycle
for different values of the Input in 1-2 space. Limit cycle varies by a factor 4
for variable while the period changes by at most 11% Right: Rescaling of the
limit cycles to the unit interval for each variable. The orbits again collapse well.
Circles mark the fixed point (D) Left : The PRC was computed by adding a
degradation term of —10s, for variable 2 for 10% of the period. (Right) Variable
1 as a function of phase for the limit cycles at different temperatures. Maximum
of 1 is defined as phase 0 for the PRC.
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Figure S 4: A scaling model evolved with Fitness B (A) Sketch of the
model. (B) Variation of the period as a function of Input. (C) Left : limit cycle
for different values of the Input in 1-2 space. Limit cycle varies over one order
of magnitude in variable 1 while the period relatively changes of at most 1%
Right: Rescaling of those limit cycle to the unit interval for each variable. The
orbits overlap again. Circles mark the fixed point (D) Left : Scaling of the PRC
was computed by adding a degradation term of —10sy for variable 2 for 10%
of the period. (Right) Variable 1 as a function of phase for the limit cycles at
different temperature. Maximum of 1 is defined as phase 0 for the PRC.
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