Supporting Information

Zhang et al. 10.1073/pnas.1202194109

SI Discussion

Although carbachol activated the M1 receptor/Gq/PLC pathway, leading to the hydrolysis of PI(4,5)P₂ and activation of TRPC6, it failed to stimulate TRPML1 activity. In contrast, the breakdown of PI(4,5)P₂ by direct activation of 5-phosphatase was sufficient to activate TRPML1. One potential explanation for this discrepancy is that the affinity of ion channels determines their sensitivity to PI(4,5)P₂ (1). The insensitivity of TRPML1 to M1 receptor activation might reflect the channel's high affinity to PI(4,5)P₂ (IC₅₀ = 0.2 μ M). Although we observed a rapid carbachol-induced translocation of GFP-PLC81-PH, a commonly used PI(4,5)P₂ probe with a K_d of 1.7 μ M (2),

 Suh BC, Hille B (2008) PIP2 is a necessary cofactor for ion channel function: How and why? Annu Rev Biophys 37:175–195. it remains unknown whether M1 receptor activation could sufficiently deplete the PI(4,5)P₂ level to modulate TRPML1. Moreover, activation of TRPML1 by GTP- γ -S, but not M1 receptor activation, could potentially be explained by a "receptor-specific phosphoinositide signaling" theory that highlights the importance of a local PI(4,5)P₂ pool in regulating the channels only adjacent to the receptors (3). Finally, the insensitivity of TRPML1 to M1 receptor/PLC activation could also be explained by the fact that receptor stimulation might activate other signaling pathways such as diacylglycerol, inositol triphosphate, Ca²⁺, and PKC, concurrently to nullify the effect of PI(4,5)P₂ depletion on TRPML1 activation.

- Gamper N, Shapiro MS (2007) Regulation of ion transport proteins by membrane phosphoinositides. Nat Rev Neurosci 8:921–934.
- Lemmon MA, Ferguson KM, O'Brien R, Sigler PB, Schlessinger J (1995) Specific and high-affinity binding of inositol phosphates to an isolated pleckstrin homology domain. Proc Natl Acad Sci USA 92:10472–10476.

Fig. S1. Single-channel currents in an I/O patch excised from a TRPML1-expressing HEK293T cell. (*A*) Single-channel openings were elicited using a voltage step protocol from -140 mV to +80 mV (HP = 0 mV). At negative, but not positive potentials, channel openings were frequently observed. C, closed state; O, open state. (*B*) PI(3,5)P₂ activates single channel TRPML1 currents at the plasma membrane (PM) in a dose-dependent manner. The PI(3,5)P₂ effect was examined in an I/O patch excised from TRPML1-GFP–expressing HEK293T cells.

Fig. S2. Mg-ATP prevents run-up of TRPML1 currents in I/O patches. In an I/O patch, bath application of 2 mM Mg-ATP for 6 min prevented run-up of ML1-4A. Upon removal of Mg-ATP for 6 min, I_{ML1-4A} was activated by 100 nM PI(3,5)P₂.

Fig. S3. Insensitivity of TRPML1^{Va} to PI(4,5)P₂. Large basal I_{ML1-Va} was detected in an I/O patch excised from ML1^{Va}-expressing cells. PI(4,5)P₂ (10 μM) failed to inhibit I_{ML1-Va}.

Fig. S4. Effects of PI(3,4,5)P₃ and PI(5)P on I_{ML1-4A} . (A) Inhibition PI(3,5)P₂-activated I_{ML1-4A} by 300 nM PI(3,4,5)P₃ in an I/O patch excised from ML1-4A stable cells. (B) Lack of an effect of PI(5)P (300 nM) on PI(3,5)P₂-activated I_{ML1-4A} .

Fig. S5. Receptor-mediated activation of PLC induces PI(4,5)P₂ hydrolysis but fails to activate TRPML1. (*A*) Activation of PLC-coupled M1 receptors had no effect on I_{ML1-4A} . Carbachol (CCH; 100 μ M) was used to activate the Gq/PLC pathway in HM1 cells. (*B*) Whole-cell TRPC6 currents were activated by CCH (100 μ M). (C and *D*) CCH-induced hydrolysis of PI(4,5)P₂ detected using a PI(4,5)P₂ probe. (C) CCH (100 μ M) induced a translocation of GFP–PLCô1-PH from the plasma membrane to the cytosol. Images shown were taken 0, 4, 6, 10, 20, and 40 s after CCH application. Red boxes indicate cytosolic regions where fluorescence intensity (F) was measured. (*D*) Time course of GFP–PLCô1-PH translocation. Changes in average fluorescence intensity ($\Delta F = F - F_{basal}$) are normalized to maximum change of fluorescence intensity (F_{max}) and plotted with time. Data were analyzed with ImageJ software (National Institutes of Health).

Fig. S6. GTP- γ -S and depolarization-activated Ci-VSP evoke whole-cell TRPML1 currents. (*A*) In an HM1 cell overexpressing TRPML1-4A, small whole-cell I_{ML1-4A} developed gradually upon pipette dialysis of GTP- γ -S (500 μ M) for 5 min. (*B*) Depolarization-activated Ci-VSP increases basal I_{ML1-4A}. Representative traces of whole-cell currents in Ci-VSP-transfected ML1–4A stable cells before (HP = -60 mV) and 8 min after depolarization (HP = +80 mV). I_{ML1-4A} was elicited by voltage ramps (from -140 mV to +100 mV; 100-ms duration).

Fig. 57. PM-translocation of inactive mutant FKBP-5-phosphatase fails to activate whole-cell TRPML1 currents. No detectable I_{ML1-4A} was observed with or without Rapamycin (0.5 μ M) application in ML1–4A –expressing HEK293 stable cells transfected with inactive mutant (D281A) of FKBP-5-phosphatase (FKBP-5-ptase-D281A) together with PM-FRB, which contains a signal for the PM localization. The dimerization of FRB and FKBP induced by rapamycin (0.5 μ M for 10 min) led to translocation of 5-phosphatase from the cytosol to the PM. I_{ML1-4A} was readily activated by SF-51 in the same cell.

Fig. S8. Mutational analysis of Pl(4,5)P₂ inhibition and Pl(3,5)P₂ activation of TRPML1. (*A* and *B*) Pl(4,5)P₂ inhibition is abolished by 7Q mutations in I/O patches. (*A*) Activation of I_{ML1-4A} by SF-51 (100 μ M; included in pipette solution) was significantly inhibited by bath application of Pl(4,5)P₂ (1 μ M). (*B*) Activation of $I_{ML1-4A-7Q}$ by SF-51 (100 μ M; included in pipette solution) was insensitive to Pl(4,5)P₂ (1 μ M). (*C*) Triple mutations in the PlP₂-interacting domain abolish the activation effect of Ci-VSP. Activation of Ci-VSP by depolarization (HP = +80 mV) failed to potentiate the SF-51(10 μ M)-activated $I_{ML1-4A/42-44A}$. (*D*) Dose-dependent activation of ML1-4A/42-44A by Pl(3,5)P₂. $I_{ML1-4A/42-44A}$ was activated by various concentrations of Pl(3,5)P₂ (10 nM, 0.1 μ M, 0.1 μ M, 0.4 μ M, and 1 μ M). Effect of SF-51 (25 μ M) is shown for comparison. (*E*) Pl(4,5)P₂ ensitivity of R61A/K62A double mutations. Activation $I_{ML1-4A/61-62A}$ by SF-51 (25 μ M) was inhibited by Pl(4,5)P₂ (0.5 μ M). (*F*) Activation of ML1-42-44A by Pl(3,5)P₂ in the lysosome. Whole-endolysosome I_{42-44A} was robustly activated by Pl(3,5)P₂ (1 μ M).