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SI Materials and Methods
Cells, cDNA, Antibodies, and Reagents. Murine embryonic fibro-
blasts (MEFs) and NIH 3T3, COS-7, HeLa, Jurkat, HT1080,
BLM, and U2OS cells were cultured as reported previously (1).
Lines stably expressing p85α or p85β were prepared as described
previously (2). Cells were transfected with Lipofectamine (In-
vitrogen). p85β was subcloned into pSG5 and a hemagglutinin
(HA) epitope was added in-frame at the N terminus. The p85β
ATG codon was replaced with a CCG codon (proline) and the
HA-tag ATG codon was maintained (Quik-Change mutagenesis
kit; Stratagene). pSG5, pSG5-p85α, pSG5-myc-p110α, pSG5-
myc-p110α, pEF-BOS-HA-p85α, pEF-BOS-HA-p85β, and ret-
roviral PRV-IRES-GFP-p85β have been described previously
(3–5). The pEGFP-PH-Btk plasmid was donated by T. Balla
(National Institutes of Health, Bethesda, MD). The plasmid
pT7/T3-U19 encoding murine p85β (6) was donated by J. W. G.
Janssen (Institute fur Humangenetik, Heidelberg, Germany). To
prepare pcDNA3-Δp85β, we deleted the BamHI site of
pcDNA3, subcloned an EcoRI fragment including p85β se-
quence into the EcoRI site of pcDNA3, and deleted the region
of interaction with p110 by using the restriction enzymes AflII
and BamHI. siRNA for human p85β and control were from In-
vitrogen; siRNA for human p85α was from Dharmacon; shRNA
for mouse p85β was from Origene. IL-6 and stem cell factor were
from Peprotech; IL-3 was from eBioscience. Primary Ab for
Western blots (WBs) were anti–phospho-(p)-protein kinase B
(PKB; Ser473; Cell Signaling), anti–pan-p85 PI3K, anti-human
p85α and anti-PKB (Upstate Biotechnology), anti-GST (Ab-
cam), and anti-HA (12CA5; Babco); anti-CD4 and -CD8 were
from Pharmingen, and anti–β-actin was from Sigma-Aldrich.
p110α Ab was donated by A. Klippel (Atugen, Berlin, Germany).
To prepare anti-p85β antibodies, we immunized rats with

a GST-fused N-terminal murine p85β fragment (residues 1–305).
Rat hybridoma 1C8 was prepared as described previously (7).
Antibodies were tested in ELISA, WB, and immunoprecipitation
(IP) by using recombinant bacterial proteins or extracts of rp85β-
or rp85α-expressing cells. Rat mAb 1C8 was affinity purified
(Protein G Sepharose; GE Healthcare) and recognized endog-
enous levels of p85β, but not p85α, in WB and IP.

WB, IP, PI3K Assay, Focus Formation, Invasion Assay, and Confocal
Microscopy. Human cell lines and tumors were lysed in RIPA
buffer containing protease and phosphatase inhibitors; NIH 3T3
cells were lysed in RIPA or 1% Triton X (TX)-100 buffer (1). IP,
PI3K assay, focus formation, and cell invasion have been de-
scribed previously (1, 8). For immunofluorescence, cells were
fixed in fresh 4% (wt/vol) paraformaldehyde in PBS solution (15
min), permeabilized in PBS solution with 1% BSA and 0.3% TX-
100, and blocked with 1% BSA, 10% (vol/vol) goat serum, and
0.01% TX-100 in PBS solution (30 min). Cells were visualized
using a 60× 1.3 numerical aperture (N.A.) oil objective on an
Olympus Fluoview 1000 microscope.

Human Tumor Analysis. Breast carcinoma (BC) and colon adeno-
carcinoma (CC) and adjacent normal tissue samples were pro-
vided by the Tissue Bank Network funded by the Molecular
Pathology Program of the Spanish National Cancer Center. CCs
were classified according to modified Dukes criteria (D0 to DC).
BCs were graded by using Bloom–Richardson criteria (grades 1–
3), and classified as luminal A, B, HER2+, or basal-type (9), ac-
cording to expression of estrogen and estrogen receptors [de-
termined by immunohistochemistry (IH)] and HER2 (determined

by FISH). For classification of basal BC (9), we stained tumor
sections by IH for cytokeratin 5/6 and for EGFR expression.
Mutational status of hotspot residues of K-Ras (G12, G13) and

PIK3CA (E542, E545, H1047) was analyzed in BC and CC. Fresh
tumor tissue samples were dissected manually, and genomic DNA
was extracted by using the Puregene Blood Core Kit B (Qiagen).
K-Ras exon 2 and PIK3CA exons 9 and 20 were amplified, and
a SNaPShot reaction was performed by using the SNaPshot
Multiplex Kit (Applied Biosystems) as described previously (10,
11). A fraction of the samples was also analyzed by Sanger se-
quencing of PCR products to confirm mutant sequences.
For WB, frozen tumor sections were extracted in RIPA lysis

buffer (1); extracts (50 μg) from tumors and surrounding normal
tissue were examined by WB using appropriate antibodies. WB
signal intensity was normalized to that of actin [or to PKB for
phosphorylated pPKB (pPKB)]. Mean normalized signals ± SD
were obtained from three or four independent tests. Normalized
p85 or pPKB signal in tumors was divided by that obtained in
normal tissue; numbers <1 (decreased expression) were con-
verted to inverse negative values.
For IH, we used anti-pPKB (Ser473) and -pS6 (Ser235/236)

antibodies (Cell Signaling). For IH signal values, we measured
signal intensity (pixels minus background) using ImageJ to con-
vert the blue channel of the original RGB images to grayscale
(specific peroxide signal). Signal intensity (scored as 1–3) was
scored in tumor cells (score of 1, 0.5–1.5 × 105 pixels/cell; score
of 2, 1.5–3 × 105 pixels/cell; score of 3, 3–6 × 105 pixels/cell).
Signal intensity scores were multiplied by the percentage of pS6-
positive tumor cells. When this value was <0.20 (samples with
low signal intensity or with a low proportion of pS6-positive
tumor cells), the sample was considered negative. For normali-
zation with pPKB/PKB (i.e., tumor-to-normal) ratios, an IH
signal of 0.20 was arbitrarily set at 1; all other IH values were
scaled proportionally.
For quantitative PCR (qPCR), mRNA was obtained from

frozen sections and examined in custom-designed TaqMan Low
Density Arrays (Applied Biosystems) containing primers and
probes for GAPDH (probe Hs4342376), PIK3R1 (Hs00236128,
Hs00381459), PIK3R2 (Hs00178181), and PTEN (Hs00829813).
As template for reverse transcription, 1 ng total RNA was used
per sample (in triplicate). qPCR was performed on an ABI Prism
7900 HT system (Applied Biosystems). Relative mRNA quan-
tification was done by calculating relative quantity (RQ) as
2−ΔΔCt, examining the cycle (i.e., Ct) at which the PCR product
appears (normalized for actin and GADPH mRNA) for each
gene. For miRNA analysis, TRIzol-extracted total RNA was
retrotranscribed by using the TaqMan MicroRNA Reverse
Transcription Kit (Applied Biosystems); miR126 was measured
by qPCR using specific probes (ID 002228; Applied Biosystems)
and normalized to U6 snRNA (ID 001973; Applied Biosystems)
and RNU19 controls (ID 001003; Applied Biosystems). For
microarrays, biotinylated cDNA (10 μg) from the 12 CC and 14
BC samples and normal tissues was processed and hybridized to
Human Genome Focus Arrays (Affymetrix). Arrays were scan-
ned at 3-μm resolution in an HP G2500A GeneArray scanner
(Agilent Technologies).

Mice, Bone Marrow Transfer, CC Model, and Lymphoma Model.
p85β−/− mice were donated by D. Fruman (University of Cal-
ifornia, Irvine, CA), and BALB/c SCID mice were obtained from
Jackson Laboratories; mice were bred and maintained in specific
pathogen-free conditions in our animal facility. The Centro
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Nacional de Biotecnología Ethics Committee approved all stud-
ies in accordance with national and European Union guidelines.
For bone marrow (BM) transplants, BM was extracted from
mouse femur, tibia, and humerus, and cells were disaggregated
and washed. A BM suspension (107 cells/mL, 200 μL) was in-
jected into the tail vein of irradiated (10 Gy) host mice (12). For
spontaneous colorectal carcinogenesis in C57BL/6 WT and
p85β−/− mice, animals were treated with azoxymethane/dextran
sodium sulfate (13). As p85β−/− mice have a defective immune
response (5), and carcinogenesis in this model depends on in-
flammation (13), mice were transplanted with WT BM as de-
scribed earlier before azoxymethane treatment. At 3.5 mo after
azoxymethane treatment, colons were resected and examined
after H&E staining.
For comparison of thymic lymphomagenesis in SCID mice (14)

expressing normal or high p85β levels, mice were transplanted
with SCID or p85β-expressing SCID BM, maintained ∼1 mo for
reconstitution, and then treated with N-ethyl-N-nitrosourea
(ENU). Two-month-old WT BALB/c SCID donors were pre-
treated with 50 mg/kg 5-fluorouracil (4 d). BM was extracted and
the cell suspension incubated (16 h) with DMEM plus 15% FCS,
5% WEHI cell line-conditioned medium (containing IL-3), 20
ng/mL recombinant IL-3, 100 ng/mL stem cell factor, and 10 ng/
mL recombinant IL-6. Spin infection with control or p85β ret-
roviruses (90 min, 37 °C) was performed by mixing cells with 2
mL retroviral supernatant with the cytokine mixture and 8 μg/mL

Polybrene; infection was repeated after 16 h. At 72 h after the
first infection, cells were injected (107 cells/mL, 200 μL) i.v. into
irradiated BALB/c SCID mice (4.5 Gy). At 1 mo after trans-
plantation, ENU was injected i.p. (0.5 μg/g in trioctanoin), which
was repeated 2 wk later. Mice were maintained in an isolator;
lymphoma development was first observed at 3 mo in p85β-
transduced mice and at 7.5 mo in controls. Spleen and thymus
were examined by flow cytometry and histochemistry.

BC Cell Line Analysis.BC cell lines MDA-MB231 andMDA-MB468
were cultured in DMEM or Leibovitz (L15) medium, respectively,
containing 10% FBS. Cells were transfected with siRNA by using
Lipofectamine RNAiMAX (Invitrogen). Cells were counted at
different time points, and the number of viable cells was de-
termined by trypan blue exclusion. Cell death was confirmed by
measuring sub-G1 DNA containing cells by flow cytometry.

Statistical Analyses. Gel bands and IH and fluorescence intensity
were quantified with ImageJ software. Associations between
variables were assessed by correlation Pearson test, Fisher exact
test, and χ2 test. For multivariate Pearson test analysis, we used
the IBM statistic 19 program. For mouse tumor analyses, we
used Student t test and the Mantel–Cox test. For PI3K pathway
evaluation, we used a Student t test. Except for multivariate
analysis, all statistics were calculated by using Prism 5 version
5.0b software (GraphPad).
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Fig. S1. PI3K pathway gene expression patterns in colon and breast carcinoma (CC and BC). Heat map representation of Affymetrix data, depicting PI3K
pathway-related gene expression changes in BC or CC tumor samples vs. normal tissue. Microarray data are expressed as log-fold change in mRNA levels. Color
code indicates increased (red) or decreased (green) levels in tumor.
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Fig. S2. Characterization of rat anti-p85β mAb 1C8. mAbs were selected in ELISA and positive clones characterized by IP and WB. (A) Extracts from bacteria
expressing His-tagged murine N-terminal (NT) fragment of p85β, GST-NT-p85β, as well as extracts of NIH 3T3 cells expressing HA-p85β (indicated) were ex-
amined by WB with 1C8 Ab that recognized murine p85β, His-NT-p85β, and GST-NT-p85β. (B) Extracts from MEFs of WT or p85β−/− mice and extracts from
control or p85β-expressing NIH 3T3 cells were examined as in A. mAb 1C8 selectively recognized endogenous murine p85β in MEF and NIH 3T3 cells (lanes 1 and
3). Arrowheads indicate specific bands. (C) Extracts of U2OS cells transfected with control, p85α-, or p85β-specific siRNA were examined as in A. (D) MEF extracts
as in B were analyzed by IP with preimmune Ab (lane 1) or with 1C8 mAb or pan-p85 Ab as indicated. The 1C8 mAb was specific for the p85β isoform and
recognized endogenous levels of p85β.
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Fig. S3. p85β expression and PI3K pathway status in BC. p85β and pPKB/PKB levels in tumor (T) vs. surrounding normal (N) tissue was examined in WB by using
appropriate Abs (triplicates). p85β WB signal intensity was normalized to that of actin, and the ratio of p85β signal intensity in tumor vs. normal tissue was
obtained. pPKB was normalized to PKB, and PKB to actin; the ratio of pPKB/PKB value in tumor vs. normal tissue was obtained. The figure shows mean ± SD
(n = 3–4 tests). Numbers <1 (decreased expression) are represented as their inverse negative values. Horizontal dashed line indicates a p85β change in the
tumor of greater or less than 1.5-fold. Thick vertical line separates tumors with >1.5-fold increase in p85β compared with normal tissue. Beneath the graph, the
following are indicated: tumor sample number, PI3K/PKB pathway status (active, Act; inactive, Inact), the specific PIK3CA and K-Ras point mutations, PTEN
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Sample 22 is an infiltrating lobular carcinoma; the remainder are infiltrating ductal carcinomas.
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levels in BC samples. p85 values were examined as in Fig. S3. PIK3R1 and R2 mRNA as well as miR126 levels were examined by qPCR. mRNA levels were
normalized to ACTB and GADPH, and each tumor sample was compared with surrounding normal tissue. RQ values (2−ΔΔCt) were calculated to estimate mRNA
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3T3 cells transfected with p85α, p85β, or Δp85β cDNAs alone or in combination with p110α (24 h) were incubated in serum-free medium for 2 h, and some were
activated with serum for 15 min as indicated. Levels of PI3K subunits and PKB activation was examined as in B. (E) NIH 3T3 cells transfected with EGFP-Btk-PH in
combination with p85α, p85β, or Δp85β (24 h) were examined as in C. Graphs and statistics are as in Fig. 3B. (F) Cells transfected p85β (24 h) were incubated in
serum-free medium in the presence of a pan-PI3K inhibitor Ly29400 (5 μM), p110β inhibitor TGX221 (30 μM), or p110α inhibitor PIK75 (0.5 μM; 2 h). Cells were
examined as in E or cell extracts as in D. (Scale bar: 15 μm.)
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Fig. S8. p85β controls tumor invasion. (A) COS-7 cells were transfected with p85α/p110α or p85β/p110α (48 h). Total extracts were examined by WB or IP by
using anti-p85 Ab (1C8 for p85β). IP-analyzed samples were tested in WB or in PI3K assays by using phosphatidylinositol (PtdIns) or PtdIns (4)P or PtdIns (4,5)P2
as substrates (in duplicate). Graphs show percent activity in each sample compared with that of p85α/p110α (100%; n = 8; End, endogenous; **P < 0.01 and
*P < 0.05 by Student t test). (B) Extracts of NIH 3T3 cell lines stably expressing control vector, p85α, or p85β, as well as extracts of NIH 3T3, BLM, or HT1080 cells
transfected with control or p85β shRNA or siRNA (as indicated; 48 h) were examined by WB using appropriate Abs. In NIH 3T3 stable cell lines, p85β-specific
band is indicated (arrowhead). Invasion assays were performed in gelatin or matrigel (as indicated) in the presence of serum (10% or 20%), PDGF (in ng/mL), or
SDF-1 (100 ng/mL). The graphs show the percent cell invasion compared with maximal (100%; mean ± SD, n = 3; *P < 0.05 and **P < 0.01 by Student t test).
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Fig. S9. Modulation of p85β expression in tumor samples. (A) Representative PCR of C57BL/6 p85β+/+ and p85β−/− mice. (B) MCF10 normal immortal epithelial
cells or BC cell lines MCF7, MDA-MB231, and MDA-MB 468 were transfected with control or p85β siRNA (48 h), and WB was used to check the p85α and p85β
expression levels compared with Jurkat cells (p85α and p85β, ∼1:1) and the efficiency of p85β knockdown (Upper). MDA-MB231 and MDA-MB 468 cells were
also transfected with p85α or p85β siRNA (48 h), and extracts were examined in WB (Lower). The graphs represent the MDA-MB231 and -MB468 cell count at
indicated times after p85α or p85β siRNA transfection, as well as the percentage of cell death at 72 h. (C) SCID mouse BM cell suspensions were infected with
control or p85β-encoding retrovirus (7 d); FACS analysis showed similar infection efficiency in all samples; p85β expression was tested in WB. (D) Flow cytometry
analysis shows CD4 and CD8 surface marker expression in cells isolated from two representative thymic and spleen lymphomas of ENU-treated SCID mice
(mouse number indicated) after adoptive transfer of BM cells overexpressing p85β. SCID mouse T cells are negative for CD3, CD4, and CD8; however, in mouse
11, the cells express CD4 and CD8 with a similar pattern in spleen and thymus. Mouse 20 represents another case with similar CD4 and CD8 expression pattern
in spleen and thymus. In addition, in mouse 11, both organs expressed CD3, whereas, in mouse 20, neither spleen nor thymus expressed CD3. The similar
phenotype of the cells in spleen and thymus suggests that the spleen cells derive from the thymic lymphoma. (E) WB shows p85β protein expression and pPKB
levels in tumor extracts from representative control and p85β-transduced ENU-treated SCID mice.
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