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SI Text
SI Materials andMethods. Numerical model of isotachophoresis-based
hybridization.Here, we show details of our novel kinetics model to
capture the hybridization reaction of two nucleic acid species un-
der isotachophoresis (ITP) conditions. Defining A, B as single-
stranded nucleic acid species and AB as double stranded hybrid,
the reaction equation is expressed as

A þ B⇄
kon

koff
AB; [S1]

where kon and koff are respectively the reaction on- and off-rate
constants. ITP drives simultaneous mixing and focusing of reac-
tants into a common electromigrating reaction zone in which re-
action is accelerated due to the high concentration of reactants.
For simplicity, we consider a case in which the species A and B
are initially mixed with LE and TE, respectively (in practice, we
can alternately mix together both species in TE and/or LE, allow-
ing reaction to start as soon as reagents are mixed). This process
is qualitatively described in Fig. 1.

Assuming negligible electroosmotic flow, we can neglect radial
electromigration and radial diffusion associated with advective
dispersion, so that the concentration distribution and electric
field vary only along the axial coordinate of the channel (1, 2).
The area-averaged, coupled electromigration-diffusion-reaction
conservation equations for species A, B, and AB can then be ex-
pressed as

ðiÞ ∂cA
∂t

þ ∂
∂x

�
ðμAE − V ITPÞcA −DA

∂cA
∂x

�
¼ −koncAcB þ koffcAB

ðiiÞ ∂cB
∂t

þ ∂
∂x

�
ðμBE − V ITPÞcB −DB

∂cB
∂x

�
¼ −koncAcB þ koffcAB

ðiiiÞ ∂cAB

∂t
þ ∂
∂x

�
ðμABE − V ITPÞcAB −DAB

∂cAB

∂x

�
¼ koncAcB − koffcAB; [S2]

where μi andDi respectively denote electrophoretic mobility and
diffusivity of each species; i represents species A, B, or AB; andE
is the local electric field. We define the electrophoretic mobility
as μ ¼ u∕E where u is species drift velocity.

Under the negligible electroosmotic flow assumption,V ITP can
be expressed as μLEj∕σLE where j is the current density along the
microchannel and σLE is the conductivity of the LE buffer. We
assume that ITP is controlled by constant applied current in
which the velocity of ITP interface, V ITP, remains approximately
constant. The width of the ITP interface is determined by a
balance between diffusion and electromigration, and following
MacInnes and Longsworth (3), it takes the form of

δtheory ¼
RT

FV ITP

�
μLEμTE

μLE − μTE

�
; [S3]

where R is the universal gas constant, T is the temperature, and
F is Faraday’s constant (1–3). Subscripts “TE” and “LE” denote
respectively properties of the TE and LE anions. Under ideal
conditions and constant applied current, ITP theory predicts
peak mode ITP will maintain constant interface width over time.
However, in practice several factors may cause an increase in the
interface width (e.g., time varying residual electroosmotic flow)

(4, 5). Thus, we assume the ITP interface width to be a function
of time, δðtÞ, to sustain general applicability of the model. As
shown in Fig. 1 we define a control volume moving at a constant
interface velocity V ITP and extending over a distance, L, which is
significantly larger than the ITP interface width, δ, at all times.

We integrate Eq. S2 over this control volume (per unit area of
channel). Assuming diffusive fluxes are zero at the control vo-
lume boundaries, the electromigration and diffusive flux terms
(the second term on the lefthand side) become known area inte-
grals at the inlet and outlet. For the source terms involving spe-
cies concentrations, the contribution of the integral outside the
interface width is negligible since the species concentrations
are several orders of magnitude greater within the interface than
beyond the interface. Thus, we approximate the integrals of con-
centration over the control volume size, L, by the integrals over a
region very near the interface width, δ:Z

L
cidx ≈

Z
δ
cidx: [S4]

We then define average concentrations, c̄i as

c̄i ¼
1

δ

Z
δ
cidx: [S5]

In treating the volume-averaged source terms c̄Ac̄B and c̄AB, we
assume that concentration distributions of species A, B, and AB
are Gaussian in shape, and that all of these Gaussian peaks are
located at the same axial coordinate within the ITP interface.
This assumption is considered as reasonable when the mobilities
of analytes are significantly greater and significantly less than
those of TE and LE, respectively, and when analyte concentra-
tions are significantly lower than those of the TE and LE, as
we consider here (2). This enables us to approximate the concen-
tration profile of each species as

ci ¼ cmax
i e−

x2

2σ2 for i ¼ A; B; and AB; [S6]

where σ is the standard deviation of the Gaussian profile of the
species (all σ are assumed equal). Given this assumption, we ela-
borate on the control-volume-integration over the interface width
from the Eq. S4 as equal to an integral over −3σ to þ3σ of the
Gaussian concentration profiles. Thus, the integration across the
interface width covers approximately 99.7% of the area under
each ci profile. Using these integration limits, the mixed term
c̄Ac̄B, which appears in the integration of Eq. S2, can be approxi-
mated as

c̄Ac̄B ¼ 3ffiffiffi
π

p c̄A c̄B: [S7]

Again, the integration boundaries reflect the fact that hybridiza-
tion product is produced only within the narrow ITP interface
region, while influx of species (and their contribution to global
accumulation rates) can be estimated relatively far from the inter-
face. Combining the assumptions and approximations given
above, we derive control-volume-averaged equations as:
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ðiÞdc̄A
dt

¼ ηTEV ITP

δ
A0 −

1

δ
dδ
dt

c̄A −
3ffiffiffi
π

p konc̄Ac̄B þ koff c̄AB

ðiiÞ dc̄B
dt

¼ ηLEV ITP

δ
B0 −

1

δ
dδ
dt

c̄B −
3ffiffiffi
π

p konc̄Ac̄B þ koff c̄AB

ðiiiÞ dc̄AB

dt
¼ −

1

δ
dδ
dt

c̄AB þ 3ffiffiffi
π

p konc̄Ac̄B − koff c̄AB;

[S8]

where ηTE and ηLE are

ηTE ¼
��

μA

μTE
− 1

�
μTE

μLE

μCI − μLE

μCI − μTE

cLE
cwellTE

�
and ηLE ¼ 1 −

μB

μLE
:

[S9]

Here, subscript CI denotes the (cationic) counter ion. The super-
script “well” denotes an upstream reservoir property. A0 and B0

represent the reservoir concentrations of species A and B respec-
tively in the TE and LE. We solve this set of non-linear ordinary
differential equations (ODE) numerically to describe the simul-
taneous focusing and reaction dynamics of the volume averaged
species concentrations over time.

Analytical model of ITP-based hybridization. Starting from the nu-
merical model shown in Eq. S8, we derive an analytical solution
by making two key assumptions. The first, most restrictive as-
sumption states that the ITP interface width remains constant
over time, δðtÞ ¼ δo, such that the terms involving derivative
of δ can be eliminated. In this limit, the time integrals of linear
combinations of Eq. S8 yield simpler equations for the conserva-
tion of species relations:

ðiÞ c̄A þ c̄AB ¼ ηTEV ITP

δo
A0t ðiiÞ c̄B þ c̄AB ¼ ηLEV ITP

δo
B0t:

[S10]

Here, the grouping ηTEV ITP∕δo is the ITP focusing coefficient of
species A in units of inverse time, so ηTEV ITPA0t∕δo is the total
concentration of species A at the ITP interface. We use this con-
servation of species relations to express c̄A and c̄B in terms of c̄AB.
Before continuing, we highlight a key difference between the
standard second-order reaction kinetics and ITP-based hybridiza-
tion kinetics. As ITP continuously focuses reactants into the in-
terface, the total concentrations of species A and B continuously
and linearly increase over time. This results in an increase in the
available reactant concentrations within the interface. The con-
servation relations are therefore in sharp contrast to those of the
standard second-order reaction kinetics, (namely, cA þ cAB ¼ A0

and cB þ cAB ¼ B0) wherein total concentrations are fixed at the
initial values.

We further impose conditions on initial reservoir concentra-
tions of A and B, namely A0 and B0. We assume that one species
has excess concentration at the ITP interface, and that the equi-
librium constant is sufficiently low. These can be expressed as:

ηTEA0 ≫ ηLEB0 and
ηTEV ITP

δo
A0t ≫ K: [S11]

These conditions are in fact less restrictive than the standard
model’s assumptions of A0 ≫ B0 and koff∕kon ≪ A0, since the
value of ηTE is typically several times larger than ηLE, and the
ITP focusing coefficient ηTEV ITP∕δo is typically order 10. Substi-
tuting Eq. S10 and applying these assumptions to Eq. S8, iii, the
latter simplifies to the following linear, inhomogeneous ODE
with non-constant coefficients:

dc̄AB

dt
þ 2atc̄AB ¼ bt2; [S12]

where

a ¼ 3ffiffiffi
π

p kon
2

ηTEV ITP

δo
A0 and

b ¼ 3ffiffiffi
π

p konηTEηLE

�
V ITP

δo

�
2

A0B0:

This equation can be readily solved using variation of parameters.
After applying the initial condition of c̄AB ¼ 0 at t ¼ 0, the ana-
lytical solution to the differential equation is obtained as

c̄AB ¼ b
2a

�
t −

1

2

ffiffiffi
π
a

r
e−at

2

erf ið ffiffiffi
a

p
tÞ
�
; [S13]

where erfi is the imaginary error function, erf iðxÞ ¼ −ierf ðixÞ
(which yields real quantities). We refer to this solution through-
out the paper as the exact analytical solution of ITP hybridization
kinetics. Expanding erfi in a Taylor series and keeping only the
leading order term yields the approximate analytical solution:

c̄AB ≅
ηLEV ITP

δo
B0t

B0;ITP|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
�
1 − e−

3
2
ffiffi
π

p ηTEV ITP
δo

A0kont 2
�
: [S14]

Effects of current density and measurement position on reaction ki-
netics. We use the approximate analytical model to further ana-
lyze the effects of current density, j, and measurement position, x,
on the reaction kinetics and fraction of completion of ITP dy-
namics. To explore its physical meaning, we scale Eq. S14, with
the steadily increasing term, B0;ITP, and obtain the fraction of re-
actants hybridized:

f ITP ¼ cAB

B0;ITP
≅ 1 − exp

�
−

3

2
ffiffiffi
π

p ηTEVITP

δo
konA0t2

�
: [S15]

The characteristic hybridization time scale for half of the re-
actants to be hybridized at the ITP interface is then given by

τITP ≅
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ln 2
ηTEV ITP

δo
konA0

s
: [S16]

We expand t, V ITP and δo respectively using t ¼ x∕V ITP,
V ITP ¼ μLEj∕σLE and δo ¼ δtheory where δtheory is the MacInnes
and Longsworth’s expression for the ITP interface width under
peak mode ITP (Eq. S3). The fraction of reactants hybridized and
the characteristic time scale in terms of x and j are given as

f ITP ≅ 1 − exp
�
−

3

2
ffiffiffi
π

p F
RT

ηTEðμLE − μTEÞ
μLEμTE

konA0x2
�
; [S17]

τITP ≅
ffiffiffiffiffiffiffiffi
ln 2

p

j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F
RT

ηTEμLEðμLE−μTEÞ
μTEσ2

LE
konA0

q ∝
1

j
ffiffiffiffiffiffiffiffiffiffiffiffiffi
konA0

p ; [S18]

where the symbol ∝ denotes proportionality. These forms high-
light proportionalities important in designing ITP-based reaction
experiments. For example, given values of kon and A0, the frac-
tion of hybrid product in ITP is determined solely by the electro-
migration length and is approximately independent of the current
density. Effectively, we can control the percentage of reactants
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hybridized by changing the observation point in the microchan-
nel. In the application of diagnostics or sequence detection, the
higher percentage of reactants hybridized usually yields the
brighter fluorescence intensity.

On the other hand, the characteristic reaction time is inversely
proportional to ITP velocity and, therefore, to current density.
For molecular-diffusion-limited dispersion, higher current yields
thinner ITP zones and higher concentrations (2). This increases
reaction rate, but also advects the reaction vessel downstream at a
proportionally higher rate. Therefore, for a fixed observation lo-
cation, higher current yields, to first order, faster reactions by de-
creasing time to travel the fixed distance. In practice, applied
current is typically limited by either the maximum output voltage
of the current source meter or by Joule heating considerations.
Note the TE zone is most typically lower conductivity than the LE
zone, so that required voltage increases as ITP progresses under
galvanostatic conditions.

Comparison of the fraction of reactants hybridized for ITP versus stan-
dard hybridization.Here, we present comparison of ITP hybridiza-
tion kinetics and standard second-order kinetics in terms of
fraction of reactants hybridized. In the main article, we examined
the figure of merit defined as τstd∕τITP comparing the time scales
of the ITP and standard reaction case. We explored the effect of
varying reactant concentrations and kinetic on-rate constants.
Here we define another figure of merit, the ratio of the expected
hybrid fraction resulting from ITP to the hybrid fraction from the
standard case, f ITP∕f std. Fig. S1 uses the analytical model
(Eq. S14) to calculate f ITP∕f std as a function of time for variable
kon · A0 values. These curves show how ITP offers vastly higher
reaction completion fractions at finite, relevant times. For exam-
ple, at 200 s, the ITP-based hybridization at 100 pM with kon of
103 M−1 s−1 (kon · A0 of order 10−7 s−1) shows roughly 5,000-
fold higher fraction of reactants hybridized than standard case.
As discussed in the next section, the increased hybrid concentra-
tions translate to increased signal-to-noise ratio for experiments
involving fluorescent hybrid products. NoteB0 does not appear in
Fig. S1 since the results of the analytical model are not a function
of B0 under the assumption of A0 ≫ B0.

Measurements of fraction of reactants hybridized. For experimental
validation of our ITP-based kinetics model, we explored the hy-
bridization kinetics of DNA molecular beacons (MBs) (6, 7) and
synthetic DNA oligonucleotides (targets). In all experiments, we
used DNA targets as species A and MBs as species B. Molecular
beacons are fluorescent probes, which give typical signal en-
hancements of 10- to 100-fold upon hybridization to a target se-
quence (6, 8). MBs consist of a central probe sequence connected
to two complementary stem sequences. A fluorophore is bound to
the 5′ terminus of the MB, and a quencher to the 3′ terminus. In
the absence of target, the stem sequences hybridize, forming a
hairpin structure where the quencher inhibits fluorescence. In
the presence of target, the MB stem preferentially unzips and
the probe sequence binds to the target, separating the fluoro-
phore from quencher to increase fluorescence signal.

In the absence of target, MBs exhibit residual background
fluorescence due to the limited efficiency of the quencher and
conformational fluctuation in equilibrium between closed and
open (yet unhybridized) MBs (9). The MB’s spontaneous-open-
ing rate is significantly low compared to closing rate, thus we
ignore the open (but unhybridized) state of MBs, and consider
only the two states of MBs in this study: closed-MBs and hybrids.
The two conformations of MB yield different levels of fluores-
cence signal. We use proportionality constants, α and β, to relate
fluorescence level and concentration for the hybrids and closed
MBs, respectively. The MB fluorescence signal when hybridized
to a target, IAB, can be normalized by the background fluores-
cence of MBs in the absence of target, IB, to yield a signal-to-

noise ratio, SNR ¼ IAB∕IB, associated with the sequence-specific
MB-target hybridization. We express the relation between the
SNR and the species concentrations as SNR ¼ ðαcAB þ βcBÞ∕
βB0 (B0 is replaced by B0;ITP for ITP cases). We can rearrange
this equation to express the fraction of reactants hybridized in
terms of SNR:

f ¼ SNR − 1

α∕β − 1
: [S19]

We use this as the relation to convert experimentally measurable
quantity (SNR) into a predictable quantify, f .

For standard second-order kinetics, as the reaction is taken to
completion (cB → 0 and cAB → B0), SNR approaches α∕β, while
f approaches unity. We can therefore measure α∕β by estimating
the steady state SNR value. We experimentally quantified α∕β as
29.3 (�4.8STD) for standard hybridization and 36.3 (�2.3STD)
for ITP hybridization. We obtained the former value using SNR
data of the case in Fig. 4. For the latter value, we used the en-
semble average and standard deviation (STD) of SNR at steady
state from the experiments shown in Fig. S2. We hypothesize that
the difference between the two cases is associated with the fact
that MBs under ITP are in an inhomogeneous buffer field (e.g.,
roughly half resides in LE, and half in TE). Different buffering
agents and slight pH differences between TE (pH ¼ 7.3) and LE
(pH ¼ 6.5) may, for example, change fluorescence yield. When
analyzing experimental data, we used corresponding α∕β values
for each case.

Microchannel preparation. For all hybridization experiments, we
used single, straight channels fabricated from free-standing capil-
laries. This setup let us achieve a cheap and reusable microchan-
nel with a suitably small inner diameter to minimize the effects of
dispersion on ITP preconcentration (2). We glued 21 μm inner
diameter, 360 μm outer diameter, and 40 mm (50 mm for the
demonstration experiment in Fig. 4) long circular capillaries
(TPS020375, Polymicro Technologies) on a 2.5 cm × 7.5 cm glass
cover slide (micro slides, VWR). We burned away the polyimide
coating using a lighter. We used the ∼1 cm long larger end of 1–
200 μL pipette tips (VWR) as reservoirs. We glued the capillary
and the two reservoirs on the glass slide using UV-cure optical
adhesive (Optical Adhesive 68, Norland Products Inc.), and
cured the glue under a portable UV lamp (B-100A, IVP) for
15 min. Once the glue hardened, we covered the entire length
of the capillary with the same optical adhesive glue to match
the index of refraction, and then cured under a UV lamp for an-
other 40 min for complete cure. Prior to each set of experiments,
we cleaned the microchannel by flowing 200 mM NaOH for
2 min, and then rinsed it with DI water for 2 min.

Experimental measurement of parameters. Kinetic on-rate constant
measurement. We conducted independent standard hybridization
experiments using premixed reactants solution for quantitation of
kon. We dissolved molecular beacons (species B) at a concentra-
tion of 10 nM and targets (species A) at concentrations of 2.5, 5,
and 10 μM in a buffer identical to the LE buffer used in ITP hy-
bridization experiments. These concentrations satisfy the as-
sumption of one species present in excess concentration, thus
we use the standard second-order reaction solution,

f std ¼ cAB∕B0 ¼ 1 − e−konA0t; [S20]

to extract the on-rate constant. We used an external vacuum
source to flow the mixture of A and B into a microchannel,
and used the detection system of Fig. 2A to quantify beacon fluor-
escence signals versus time. We continued recording the fluores-
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cence signal until there was little change in fluorescence intensity
over time (indicating steady state of reaction).

To analyze the data we first subtract the buffer-only back-
ground signal from the raw fluorescence intensity versus time
data. We then divide this background-subtracted signal by the
MB background in the absence of target (fluorescence intensity
before adding target) to obtain the SNR.We convert SNR to frac-
tion of reactants hybridized, f std ¼ cAB∕B0, using Eq. S19. In
Fig. S2A, we present a plot of f std versus A0t for the experimental
data (symbols) and a nonlinear regression fit (solid line). As per
Eq. S20, all data collapsed into a single curve on a time axis nor-
malized by 1∕A0, which confirms that the time scale of this reac-
tion is proportional to the inverse of concentration of excess
species. We estimate the value of kon as 4750 M−1 s−1 using a
nonlinear least squares fit on all data points, and report the
95% confidence interval of �2 M−1 s−1 for the fitting parameter,
kon. We employed the “fit” function of MATLAB, which is based
on the trust-region-reflective algorithm (10). For all theory pre-
dictions, we substitute this measured parameter value of kon in
the model.

Fig. S2B shows the fraction of reactants hybridized, f std, versus
time on a log basis for the same data. Here, we also include an
additional experimental result using 10 and 20 nM concentrations
of MB and target DNA, respectively. The solid lines indicate the
theory predictions based on Eq. S20 using the experimentally
measured value of kon. The comparison between theory and
experimental data shows how a single value of kon predicts obser-
vable hybridization reaction kinetics across a wide range of reac-
tant concentrations. Note the case of 10 nMMB and 20 nM target
hybridization (diamonds) falls just outside the applicability of the
model, and yet the model fairly well captures the associated slow
kinetics.

Experimental measurements of ITP parameters.We measured ITP
velocity, V ITP and ITP interface width, δ from the ITP hybridiza-
tion experiments, and used those values for the required para-
meters in model solutions. As shown in Fig. 5B of the main
article, the raw data recorded from ITP-based hybridization ex-
periment consists of seven peaks in approximate Gaussian shape.
We fit each peak with a Gaussians distribution in the form of I ¼
Aeðt−μÞ 2∕2σ2 where I is the fluorescence intensity, A is the ampli-
tude, μ is the mean, and σ is the standard deviation of the Gaus-
sian peak. The example raw data, Gaussian fit and all relevant
parameters are shown in Fig. S3. We define the ITP interface
width δ as 6σ of each peak.

In Fig. S4A, we present the peak position versus time data and
its linear regression fit. We used the slope of the fit, 107 μm∕s, as
the value of V ITP throughout the paper. We observed interface
width increased with time as shown in Fig. S4B. For the numerical
solutions, we approximated δðtÞ as a first order polynomial:
δðtÞ ¼ mtþ b, extracted the slope, m, and y-intercept, b, using
a linear regression fit. For the analytical model, we assumed
for simplicity a time-invariant interface width,δo , and used the
time averaged and ensemble averaged values of δ resulting in
a value of 59 μm.

These data also provide a measure of the repeatability of the
time of arrival and interface width data. We calculated coefficient
of variations at each observation location. The maximum values
of coefficient of variation were 4.9 % and 11.7%, respectively, for
the data shown in Fig. S4 A and B. Previous studies (11, 12) have
shown that ITP-aided nucleic acid hybridization is robust and re-
peatable. Refs. 11 and 12 each present repeats of the ITP-based
hybridization data as well as application to very different targets:
Persat et al. 11 for detection of micro-RNA sequences from total
RNA samples of various tissues, and Bercovici et al. 12 for Es-
cherichia coli 16S rRNA from urine samples. For example, the
study by Bercovici et al. 12 includes an overlay of 37 repeats

of current versus time data for ITP-aided hybridization, and these
have a coefficient of variation of less than 3%.

The parameter values used in the numerical and analytical
model predictions can be summarized as follows: V ITP is
107 μm∕s, kon is 4750 M−1 s−1, the slope and y-intercept
of δðtÞ are 0.4 μm∕s and 12.7 μm, respectively, δo is 59 μm,
ηTE ¼ 7.8 and ηLE ¼ 0.48 using DNA mobility of 3.8 ×
108 m2 V−1 s−1 [an estimate based on Stellwagen 13] for our
39-mer MBs and targets.

Comparison of analytical and numerical model. We developed the
analytical model based on two key assumptions: excess of one
species over the other at the reaction region formed by the
ITP interface, γ ¼ ηTEA0∕ηLEB0 ≫ 1, and a constant interface
width. Here we evaluate the effect of each assumption on the ac-
curacy of the solution, by comparing three different models:

1. Numerical model 1 assumes co-located Gaussian shape con-
centration profiles of all focused species, constant ITP velo-
city, and a linearly increasing ITP interface width, δðtÞ ¼
mtþ b. This model is obtained by numerically integrating
Eq. S8. We used experimentally measured parameter values,
V ITP ¼ 107 μm∕s, δðtÞ ¼ mtþ b, with measured values of
0.4 μm∕s and 12.7 μm for m and b, respectively, and our mea-
sured value of kon ¼ 4750 M−1s−1 (see SI Experimental mea-
surement of parameters). This model was used in Fig. 3 as the
numerical model lines.

2. Numerical model 2 shares all the assumptions of numerical
model 1, but also assumes a constant ITP interface width,
δðtÞ ¼ δo. The assumption of constant interface width simpli-
fies Eq. S8 into Eq. S15, but these must still be solved numeri-
cally. We used an ensemble averaged and time averaged ITP
interface width value of 59 μm. This model is not presented in
Fig. 3, but plotted in Fig. S5. The equations describing this
model are simply,

ðiÞdc̄A
dt

¼ ηTEV ITP

δo
A0 −

3ffiffiffi
π

p konc̄Ac̄B þ koff c̄AB

ðiiÞdc̄B
dt

¼ ηLEV ITP

δo
B0 −

3ffiffiffi
π

p konc̄Ac̄B þ koff c̄AB

ðiiiÞdc̄AB

dt
¼ 3ffiffiffi

π
p konc̄Ac̄B − koff c̄AB:

[S21]

3. The exact analytical model assumes both constant ITP interface
width and excess of one species over the other. This model is
described by Eq. S13, and is used for the analytical prediction
lines shown in Fig. 3.

Fig. S5 presents a comparison of all three models. Each calcu-
lation is based on the same parameters as in Fig. 3. First, we focus
on the cases with γ ¼ 16 and 160 values, which satisfy the assump-
tion of one excess species. Cleary, the assumption of a constant
interface width (made by numerical model 2 and the analytical
model) results in some deviation from the varying delta model
(numerical model 1). This effect of constant width is particularly
important at short times where hybridization rate is under-pre-
dicted by the analytical model. It is less important at long times
and the analytical model only slightly overpredicts the expected
values. Importantly, for this regime of γ values, we see that there
are only negligible differences between model 2 and the analytical
model. This suggests that the additional assumption of one excess
species in the regime of γ ¼ 10 or greater results in negligible
error. Second, we comment on the case of γ ¼ 1.6. As discussed,
the constant width assumption resulted in under- then over-pre-
diction error of the analytical model at respectively short and in-
termediate times. However, in addition to this, we see for the
γ ¼ 1.6 case that the overprediction by the analytical model is
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more severe at long times. In summary, we conclude that most of
the error in the analytical model relative to the numerical model
can be attributed to the simplifying constant width assumption.

Also, we see that errors associated with violating the one excess
concentration assumption are significant for γ values of order 1.6
or less, as expected.
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Fig. S1. Ratio of fractions of reactants hybridized for the ITP-based hybridization and standard hybridization as a function of time. The curves are plotted
using the analytical model for ITP hybridization kinetics. For long times, the values approach unity since f std and f ITP each approach unity. f ITP∕f std values
greater than unity imply that f ITP reaches the state of complete hybridization (in ITP zone) faster than f std. The parameter values used for calculations
are ηTE ¼ 50, V ITP ¼ 100 μm∕s, and δo ¼ 50 μm (same as Fig. 2 of the main article).

Fig. S2. Measurements of the molecular beacon kinetic on-rate constant, kon. We explored the kinetic behavior of the MBs at 21 °C using a set of fluorescence
measurements over time at a range of MB and target DNA concentrations. The data were taken with a sampling rate of 66.7 Hz, and the various symbols
represent different target andMB concentrations, as indicated in the legend. (A) Experimental data for on-rate constant measurement (symbols) and nonlinear
least square fit (solid line) are shown on a time axis weighted byA0. We performed two repetitions for each target concentration. As per Eq. S20, all the fraction
of reactants hybridized data, f std, versus A0t collapse into a single curve. We used a nonlinear least squares fit and obtained a kon value of 4750 M−1 s−1. We
used this single, extracted kon value in all of ourmodel-based predictions. (B) Inset plot shows the same hybridization data and an additional measurements at a
lower concentration, 10 nM MB and 20 nM target DNA, versus physical time. These are presented together with theory predictions (solid lines) based on the
measured value of kon. The latter data demonstrate that the use of our kon value in the standard second order hybridization solution [Eq. S20] predicts hy-
bridization kinetics for a wide range of concentrations. This includes the diamonds symbol series, which is a regime just outside the expected range of the
model.
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Fig. S3. Example raw ITP-based hybridization data (at one location) and its Gaussian fit. We first define the peak value as A, and the corresponding time as μ,
and fit the data to a Gaussian distribution. We use the obtained standard deviation of the Gaussian fit to extract ITP interface width, defined as δ ¼ 6σ. We
integrate the fluorescence intensity data ranging from μ − 3σ to μþ 3σ, and obtain total fluorescence signal.

Fig. S4. Measurements of ITP interface velocity andwidth from experimental data. (A) The axial locations of the ITP peaks versus arrival times at each location,
for the same ITP hybridization experiments shown in Fig. 3. x ¼ 0 corresponds to the tip of the channel in the TE well, where ITP forms. Nine data points are
shown at each peak location corresponding to three realizations at three target concentrations. We applied a linear regression fit (black solid line), and
extracted an ITP velocity of 107 μm∕s from the slope of the fit. (B) The measured ITP interface widths versus time (circles). We used a linear regression
fit (solid black line) to obtain the slope and intercept values for the first order polynomial approximation of δðtÞ ¼ mt þ b. The average of all data points
yielded the time and ensemble averaged value of ITP interface width, δo ¼ 59 μm, which we used for the analytical model.

Fig. S5. Comparison of the analytical and numerical models for ITP-based hybridization kinetics. Shown are fractions of reactants hybridized
f ITP ¼ cBT;ITP∕B0;ITP versus time at target concentrations of 1, 10, and 100 nM, and at a fixed molecular beacons concentration of 10 nM. Solid lines present
numerical model 1 based on the coupled ordinary differential equations [Eq. S8] using a time-varying width function approximated as a first order polynomial.
Dash-dot lines present numerical model 2 based on Eq. S21 using the time-averaged constant ITP width. Dashed lines present the analytical model based on
Eq. S13. Differences between the solid and dash-dot lines help demonstrate the errors associated with assuming a constant interface width, and the differences
between the dash-dot and dashed lines demonstrate errors associated with violating the assumption that one species is in strong excess.
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