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SI Materials and Methods
Subjects. High-resolution structural connectome magnetic reso-
nance imaging (MRI) was carried out in 80 healthy adults after
obtaining written informed consent. The original set was divided
into two sets of 40 subjects each. One set constitutes the principal
data set [set 1: age 28.6 (7.9) y, 21 male], and the other served as
a replication dataset [set 2: age 27.0 (6.9) y, 27 male].

MRI Acquisition. MRI data were acquired on a 3-Tesla Philips
Achieva Clinical scanner. For each subject, diffusion tensor im-
aging (acquisition parameters: SENSE-p = 3; two sets of 30 dif-
ferent weighted directions, and 2 × 5 b = 0 images (1); repetition
time (TR)/echo time (TE) = 7,035/68 ms, 2 × 2 × 2 mm, 75 slices
covering whole brain, b weighting of 1,000 s/mm2, second set with
reversed k-space readout and an anatomical T1 image for ana-
tomical reference [3D fast field echo (FFE) using parallel imag-
ing; TR/TE = 10 ms/4.6 ms; field of view (FOV) = 240 × 240
mm, 200 slices covering whole brain, 0.75 × 0.75 × 0.75 mm] data
were acquired.

Data Processing. Processing of the diffusion tensor imaging (DTI)
images included the following steps (2, 3): DTI images were
corrected for susceptibility and eddy current distortions and
a tensor was fitted to the diffusion profile within each voxel using
a robust tensor fitting method. The preferred diffusion direction
within each voxel was computed as the principal eigenvector of
the eigenvalue decomposition of the fitted tensor. Next, the
preferred diffusion direction was used for streamline tractog-
raphy [fiber assignment by continuous tracking (FACT)] to re-
construct white matter pathways. Within each voxel in the brain
mask, eight seeds were started, evenly distributed over the vol-
ume of the voxel. A streamline was started from each seed fol-
lowing the main diffusion direction from voxel to voxel and was
stopped when the fiber track reached a voxel with a fractional
anisotropy (FA) value <0.1, when the fiber trajectory left the
brain mask, or when the fiber track made a sharp turn of more
than 45° (3). T1 images were processed using freesurfer (V5)
(3, 4).

Connectome Reconstruction. Structural brain networks of cerebral
cortex were constructed by dividing the cortex into 1,170 ran-
domly placed and equally sized parcels (network nodes) and
estimating their connectivity strength as the number of connecting
white matter streamlines (network edges) (2, 5, 6). Connectome
reconstruction included the following steps. First, individual
brain networks were modeled on the basis of the set of recon-
structed fiber tracts combined with the segmented brain regions
(3, 5). For each subject, the brain network was mathematically
described as a graph consisting of the set of 1,170 brain parcels
(called nodes) and a set of connections describing the number of
streamlines between the nodes. For each pair of nodes i and j it
was determined whether there were streamlines present in the
total collection of reconstructed tracts F that interconnected
region i and region j. The number of streamlines between i and j
was taken as the connectivity strength (or network density) be-
tween nodes i and j in the network and included in the con-
nectivity matrix. In addition to the strength, the physical length
of each edge was calculated from the average length of the in-
terconnecting streamlines. Edges comprising fewer than 10
streamlines were considered potentially spurious and were de-
leted from the connection matrix (5). Next, for both the principal
and the replication datasets, a group connectome was con-

structed by selecting all connections that were present in at least
one-third of the group of subjects (3). The group connectome
was formed by averaging the “strength” and “length” values over
existing (nonzero) edges (3, 5–7).

Network Visualization. To visualize possible differences in the
topological ordering of connections for each of the connection
classes, nodes were ordered along a circle’s perimeter, using an
optimization algorithm based on simulated annealing. This al-
gorithm attempts to rearrange the rows and columns (i.e., nodes)
of the connection matrix in such a way that the elements of the
matrix are squeezed toward the main diagonal by minimizing
the “cost” of the system, defined as the total cost of placing the
nodes on the perimeter of the ring. At the first iteration, the nodes
were randomly placed on a circle. Next, at each iteration, two
nodes were randomly replaced and the new configuration was
preserved (i) if the cost of the new configuration was a new
minimum or (ii) with a certain level of probability p defined as

p ¼ exp
�
C−Cmin

T

�
with C the cost of the current configuration, Cmin

the current cost minimum, and T the “temperature” describing to
what extent the system allows for the examination of regimes with
a cost higher than the current setting. The initial setting of the
temperature was decreased at each iteration following an expo-
nential decay, gradually “cooling off” the system (hence the term
“annealing”). In total, 106 iterations were run.
“Percentage of cost” (“% of cost”) as shown in Fig. 2C ex-

presses the proportion of total network cost taken on by con-
nections in close proximity on the ring (proximal connections),
determined as nodes within distance of 5% circumference on the
ring (to left and right) and by more long-distance connections
(distal connections, >5% of circumference).

Rich Club Detection. The resulting network was analyzed with
methods from graph theory (8, 9). The so-called “rich club”
phenomenon in networks is said to be present when the high-
degree nodes of a network tend to be more densely connected
among themselves than expected by chance (10). The rich club
was identified by comparing the density of connections among
nodes with a minimum degree k to the density found in ran-
domized networks preserving degree sequence. To confirm the
presence of a rich club in the brain, first, for the group con-
nectome, the degree k of each node was computed as the
number of binary connections. Next, for each value of k, the
subset of nodes with a degree larger than k was selected from
the network. From this subset, consisting of n nodes and the
collection of E>k connections, their total sum of weights W>k was
determined, with weights W defined as number of streamlines
(network density) of the edges (2). The weighted rich club pa-
rameter Φw(k) was then computed as the ratio between W>k and
the sum of the weights of the strongest E>k connections of the
whole network, given by the top E>k number of connections of
the collection of ranked connections Wranked in the network.
Formally, Φw(k) is given by (11)

ϕw ðkÞ ¼ W> kPE> k
l¼1 w

ranked
l

: [S1]

Φ(k) is typically normalized relative to a set of comparable
random networks of equal size and degree sequence, giving
a normalized rich club coefficient Φw

norm (10, 12). Ten thousand
random networks were generated, preserving the degree distri-
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bution and sequence of the original network (13). For each level
of k, for each of these randomized networks, the rich club
coefficient Φw

random was computed. Φw
random(k) was computed

as the average rich club coefficient over the m random networks.
The normalized rich club coefficient Φw

norm(k) was computed as

ϕw
normðkÞ ¼ ϕwðkÞ

ϕw
randomðkÞ

: [S2]

Ten thousand random networks were generated, preserving the
degree distribution and sequence of the original network (13). A
network is said to have a rich club organization if Φw

norm(k) > 1,
for a continuous range of k. To assess statistical significance of
the results, permutation testing was used. Rich club measures
were statistically assessed with permutation testing (2, 6). The
distribution of Φw

random(k) yielded a null distribution of rich club
coefficients obtained from random topologies. Using this null
distribution, Φw(k) was assigned a P value by computing the
percentage of random values that were found to be more ex-
treme than the observed rich club coefficient Φw(k). All tests

were conducted using Bonferroni-adjusted α-levels of 0.0025 per
test (0.05/tests performed).

Path Metrics. Communication cost was based on the path length
(topological distance) between any node i and any node j in the
network (13). First, all 683,685 unique [i.e., N*(N − 1)/2]
shortest paths between all n = 1,170 nodes in the network were
traced. Second, the total communication cost of the shortest
path between nodes i and j was computed as the sum of the
product of the physical lengths and density (i.e., number of
streamlines) of the edges that were used while traveling from
node i to j in the network. Note that related to the bidirectional
character of all edges in the graph the communication cost
traveling from node j to i is similar to the communication cost
when traveling from node i to node j. Subsequently, for each
path, the proportion of the total communication cost spent on
rich club, feeder, and local connections was computed. Once
aggregated across all paths, the communication cost expresses
the total amount of signal traffic carried along each edge of the
network, taking into account its density, its length, and the
number of short paths it supports.

1. Jones DK (2004) The effect of gradient sampling schemes on measures derived from
diffusion tensor MRI: A Monte Carlo study. Magn Reson Med 51:807–815.

2. van den Heuvel MP, Sporns O (2011) Rich-club organization of the human
connectome. J Neurosci 31:15775–15786.

3. van den Heuvel MP, Mandl RCW, Stam CJ, Kahn RS, Hulshoff Pol HE (2010) Aberrant
frontal and temperal network structure in schizophrenia: A graph theoretical
analysis. J Neurosci 30:5915–5926.

4. Fischl B, et al. (2004) Automatically parcellating the human cerebral cortex. Cereb
Cortex 14:11–22.

5. Hagmann P, et al. (2008) Mapping the structural core of human cerebral cortex. PLoS
Biol 6:e159.

6. Bassett DS, et al. (2008) Hierarchical organization of human cortical networks in
health and schizophrenia. J Neurosci 28:9239–9248.

7. Achard S, Bullmore E (2007) Efficiency and cost of economical brain functional
networks. PLoS Comput Biol 3:e17.

8. Bullmore E, Sporns O (2009) Complex brain networks: Graph theoretical analysis of
structural and functional systems. Nat Rev Neurosci 10:186–198.

9. Wig GS, Schlaggar BL, Petersen SE (2011) Concepts and principles in the analysis of
brain networks. Ann N Y Acad Sci 1224:126–146.

10. Colizza V, Flammini A, Serrano MA, Vespignani A (2006) Detecting rich-club ordering
in complex networks. Nat Phys 2:110–115.

11. Opsahl T, Colizza V, Panzarasa P, Ramasco JJ (2008) Prominence and control: The
weighted rich-club effect. Phys Rev Lett 101:168702.

12. McAuley JJ, da Fontoura Costa L, Caetano TS (2007) Rich-club phenomena across
complex network hierachies. Appl Phys Lett, 91: 084103.

13. Rubinov M, Sporns O (2010) Complex network measures of brain connectivity: Uses
and interpretations. Neuroimage 52:1059–1069.

14. Milo R, et al. (2002) Network motifs: Simple building blocks of complex networks.
Science 298:824–827.

a

d

b

c
rich club level (k>x)

0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8

1 3 5 7 9 11 13 15

replication dataset (n=40)

local
feeder
rich club

short
<30mm

middle
30-90mm

long
>90mm

74%

14%
12%

47%

26%

27%

25%

22%

53%

network 
density

55%

29%

16%

network
cost

45%

23%

32%

25%

38%

37%

20%

communication
cost of paths 
through RC

45%

35%

x1.4

x1.1

x .8

cost / density

communication
cost

max 19
local feeder rich club

* * * * * * * * * *

no
rm

(k
)

tim
es

 m
or

e 
de

ns
e 

th
an

 ra
nd

om

Fig. S1. Results of replication dataset (n = 40). (A) Rich club curve of the replication dataset. (B) Left, local connections (yellow); Center, feeder connections
(orange); Right, rich club connections (red). Consistent with the results of the principal dataset, the brain’s rich club contains parts of the precuneus, superior
frontal cortex, anterior cingulate cortex, posterior cingulate cortex, superior parietal cortex, and the insula, all in both cerebral hemispheres. (C) Proportions of
short-, middle-, and long-range connections that belong to the categories of short (<30 mm), middle (30–90 mm), and long-range connections (>90 mm). (D)
Proportions of network density, network cost, communication cost, and communication cost of paths through the rich club for the categories of rich club,
feeder, and local connections.
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Fig. S2. Each communication path was classified according the specific sequence of connections that were crossed along the path traveled, referred to as
“path motifs.” Shown are eight examples of paths contributing to the path motifs “L” (column I, a and b), “LFR” (column II, a and b), “LFL” (column III, a and b),
and “LFRFL” (column IV, a and b), respectively.
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