Current Biology, Volume 22

Supplemental Information

A Novel Role for Bcl-2 in Regulation

of Cellular Calcium Extrusion

Pawel E. Ferdek, Julia V. Gerasimenko, Shuang Peng, Alexei V. Tepikin, Ole H. Petersen, and Oleg V. Gerasimenko

Supplemental Figure Legends

Figure S1. Cytosolic Calcium Extrusion Is Substantially Increased in BcI-2 KO Cells

(A) Average traces (mean value and standard error) of cytosolic calcium responses to 10μ M ACh and 10μ M thapsigargin in Fluo-4-loaded pancreatic acinar cells isolated from WT (blue trace, n=11) and Bcl-2 KO (red trace, n=23) mice.

(B) Comparison of the average area under the traces of normalized Fluo-4 fluorescence responses recorded between 200s and 400s from (A) (p=0.002). Error bars represent standard errors.

(C) Average traces (mean value and standard errors) of cytosolic calcium responses to 10μ M thapsigargin in Fura-2-loaded pancreatic acinar cells isolated from WT (blue trace, n=35) and Bcl-2 KO (red traces, n=27) mice presented as changes in 340/380 nm ratio. Initial increase is cytosolic [Ca²⁺] induced by thapsigargin; this is followed by Ca²⁺ extrusion across the plasma membrane. The rate of Ca²⁺ extrusion is much faster in Bcl-2 KO cells than in the WT cells.

(D) The graph shows the rate of decrease in Fura-2 340/380 nm ratio is dependent on the temporal ratio values in WT (blue) and Bcl-2 KO (red) pancreatic acinar cells, which corresponds to cytosolic Ca^{2+} extrusion. -d(Ratio)/dt values were calculated from average traces depicted in (C).

Figure S2. Cytosolic Ca²⁺ Extrusion in Pancreatic Acinar Cells Is Mainly Dependent on the PMCA.

(A) Normal (WT) pancreatic acinar cells. Average trace (n=18) showing changes in $[Ca^{2+}]_i$ evoked first by application of thapsigargin in the absence of external Ca²⁺ and thereafter by a 300s period of exposure to an external solution containing 5mM Ca²⁺, followed by its removal. Na⁺ was present in the external solution throughout the whole experiment.

(B) Normal (WT) pancreatic acinar cells; average trace (n=24). Similar protocol as in (A), but Na⁺ in external solution was substituted by NMDG⁺ 200 s before exposure to 5mM Ca²⁺. The absence of Na⁺ does not affect the rate of Ca²⁺ extrusion.

(C) Pancreatic acinar cell form Bcl-2 KO mouse. Typical trace demonstrating changes in $[Ca^{2+}]_i$ evoked by exposure to an external solution containing 5mM Ca^{2+} in the constant presence of Na⁺ (standard NaHEPES buffer). The ER was emptied beforehand by application of 2µM thapsigargin.

(D) Pancreatic acinar cell form Bcl-2 KO mouse. Typical trace demonstrating changes in $[Ca^{2+}]_i$ evoked by exposure to an external solution containing 5mM Ca^{2+} in the absence of Na⁺. The ER was emptied by application of 2µM thapsigargin and thereafter NaHEPES was substituted to NMDG-HEPES. The absence of Na⁺ does not affect the rate of Ca²⁺ extrusion as compared to (C).

(E) Normal (WT) pancreatic acinar cell. Typical trace demonstrating changes in $[Ca^{2+}]_i$ evoked by exposure to an external solution containing 5 mM Ca^{2+} after empting the ER by application of 2µM thapsigargin. The trace is a control for (F).

(F) Normal (WT) pancreatic acinar cell. Typical trace showing inhibition of cytosolic Ca^{2+} extrusion by 1mM La^{3+} as compared to (E). $[Ca^{2+}]_i$ was increased by exposure to 5mM Ca^{2+} in the external solution after empting the ER with 2µM Tg.

Figure S3. Overexpression of BcI-2 in AR42J Cells Decreases PMCA-dependent Cytosolic Ca²⁺ Extrusion across the Plasma Membrane

(A) Typical trace showing changes in $[Ca^{2+}]_i$ in a control AR42J cell transfected with cytosolic Cameleon D1. The ER store was depleted with 10µM cyclopiasonic acid (CPA) followed by substitution of Na⁺ in the external solution to NMDG⁺ (in order to provide inhibition of NCX). Elevated $[Ca^{2+}]_i$ decreased towards the baseline values after removal of 10mM Ca²⁺ from the external solution.

(B) An AR42J cell overexpressing Bcl-2. Similar protocol as in (A). The rate of Ca^{2+} extrusion after removal of 10mM external Ca^{2+} is substantially slower than in the control AR42J cell (shown in (A)).

(C) Typical trace showing changes in $[Ca^{2+}]_i$ in a Fura-2-loaded control AR42J cell. The ER store was depleted with 10µM cyclopiasonic acid (CPA); Na⁺ was substituted to NMDG⁺ in the external solution 50s before the cell was briefly exposed to high (10mM) extracellular Ca²⁺. Elevated $[Ca^{2+}]_i$ decreased towards the baseline values after removal of 10mM Ca²⁺ from the external solution.

(D) An AR42J cell overexpressing Bcl-2. Similar protocol as in (C). The rate of Ca^{2+} extrusion after removal of 10mM external Ca^{2+} is much slower than in the control cell (shown in (A)).

(E) The bar chart compares half times $(\tau_{1/2})$ of $[Ca^{2+}]_i$ decrease towards the resting level following removal of external Ca²⁺ in Fura-2-loaded control AR42J cells (blue bar, n=44) and in AR42J cells overexpressing Bcl-2 (purple bar, n=127). Typical traces were presented in (C) and (D).

Figure S4. Localization of Bcl-2 in Pancreatic Acinar Cells and AR42J Cells.

(A) Coimmunolocalization of the Bcl-2 and the PMCA in a fixed preparation in a cluster of pancreatic acinar cells. The cells were immunostained with antibodies against Bcl-2 (Aa) and the PMCA (Ab); overlaid in (Bc).

(B) (Ba) A section of a pancreatic acinar cell expressing fusion protein Bcl-2-GFP as shown in green. (Bb) The plasma membrane was stained with FM 1-64, which is shown in red. (Bc) Overlay of green and red fluorescence demonstrates partial colocalization (yellow) at the plasma membrane.

(C) Coimmunolocalization of the Bcl-2-GFP and the PMCA in a fixed preparation of AR42J cells. The cells are expressing fusion protein Bcl-2-GFP – shown in green (Ca); and were immunostained with antibodies against the PMCA (red) (Cb); overlaid in (Cc).

Supplemental Figure 1

D

 Linear fit (WT) WT 0 0.0025 Bcl-2 KO Linear fit (Bcl-2 KO) 0.002 -d(R_{340/380})/dt 0.0015 0.001 0.0005 0 0.3 0.5 0.7 R_{340/380}, Fura-2 AM

Supplemental Figure 2

Supplemental Figure 3

Supplemental Figure 4

2 µm

5 µm