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Supplemental Figure Legends 
 
Figure S1. Cytosolic Calcium Extrusion Is Substantially Increased in Bcl-2 KO Cells 

(A) Average traces (mean value and standard error) of cytosolic calcium responses to 10µM ACh and 
10µM thapsigargin in Fluo-4-loaded pancreatic acinar cells isolated from WT (blue trace, n=11) and Bcl-2 
KO (red trace, n=23) mice.  

(B) Comparison of the average area under the traces of normalized Fluo-4 fluorescence responses 
recorded between 200s and 400s from (A) (p=0.002). Error bars represent standard errors.  

(C) Average traces (mean value and standard errors) of cytosolic calcium responses to 10µM 
thapsigargin in Fura-2-loaded pancreatic acinar cells isolated from WT (blue trace, n=35) and Bcl-2 KO 
(red traces, n=27) mice presented as changes in 340/380 nm ratio. Initial increase is cytosolic [Ca

2+
] 

induced by thapsigargin; this is followed by Ca
2+

 extrusion across the plasma membrane. The rate of Ca
2+

 
extrusion is much faster in Bcl-2 KO cells than in the WT cells. 

(D) The graph shows the rate of decrease in Fura-2 340/380 nm ratio is dependent on the temporal ratio 
values in WT (blue) and Bcl-2 KO (red) pancreatic acinar cells, which corresponds to cytosolic Ca

2+
 

extrusion. -d(Ratio)/dt values were calculated from average traces depicted in (C). 
 
Figure S2. Cytosolic Ca

2+
 Extrusion in Pancreatic Acinar Cells Is Mainly Dependent on the PMCA. 

(A) Normal (WT) pancreatic acinar cells. Average trace (n=18) showing changes in [Ca
2+

]i evoked first by 
application of thapsigargin in the absence of external Ca

2+
 and thereafter by a 300s period of exposure to 

an external solution containing 5mM Ca
2+

, followed by its removal. Na
+
 was present in the external 

solution throughout the whole experiment. 

(B) Normal (WT) pancreatic acinar cells; average trace (n=24). Similar protocol as in (A), but Na
+
 in 

external solution was substituted by NMDG
+
 200 s before exposure to 5mM Ca

2+
. The absence of Na

+
 

does not affect the rate of Ca
2+

 extrusion. 

(C) Pancreatic acinar cell form Bcl-2 KO mouse. Typical trace demonstrating changes in [Ca
2+

]i evoked by 
exposure to an external solution containing 5mM Ca

2+
 in the constant presence of Na

+
 (standard 

NaHEPES buffer). The ER was emptied beforehand by application of 2μM thapsigargin. 

(D) Pancreatic acinar cell form Bcl-2 KO mouse. Typical trace demonstrating changes in [Ca
2+

]i evoked by 
exposure to an external solution containing 5mM Ca

2+
 in the absence of Na

+
. The ER was emptied by 

application of 2μM thapsigargin and thereafter NaHEPES was substituted to NMDG-HEPES. The 
absence of Na

+
 does not affect the rate of Ca

2+
 extrusion as compared to (C). 

(E) Normal (WT) pancreatic acinar cell. Typical trace demonstrating changes in [Ca
2+

]i evoked by 
exposure to an external solution containing 5 mM Ca

2+
 after empting the ER by application of 2μM 

thapsigargin. The trace is a control for (F). 

(F) Normal (WT) pancreatic acinar cell. Typical trace showing inhibition of cytosolic Ca
2+

 extrusion by 
1mM La

3+
 as compared to (E). [Ca

2+
]i was increased by exposure to 5mM Ca

2+
 in the external solution 

after empting the ER with 2μM Tg. 



Figure S3. Overexpression of Bcl-2 in AR42J Cells Decreases PMCA-dependent Cytosolic Ca
2+

 
Extrusion across the Plasma Membrane  

(A) Typical trace showing changes in [Ca
2+

]i in a control AR42J cell transfected with cytosolic Cameleon 
D1. The ER store was depleted with 10μM cyclopiasonic acid (CPA) followed by substitution of Na

+
 in the 

external solution to NMDG
+
 (in order to provide inhibition of NCX). Elevated [Ca

2+
]i decreased towards the 

baseline values after removal of 10mM Ca
2+

 from the external solution. 

(B) An AR42J cell overexpressing Bcl-2. Similar protocol as in (A). The rate of Ca
2+

 extrusion after 
removal of 10mM external Ca

2+
 is substantially slower than in the control AR42J cell (shown in (A)).  

(C) Typical trace showing changes in [Ca
2+

]i in a Fura-2-loaded control AR42J cell. The ER store was 
depleted with 10μM cyclopiasonic acid (CPA); Na

+
 was substituted to NMDG

+
 in the external solution 50s 

before the cell was briefly exposed to high (10mM) extracellular Ca
2+

. Elevated [Ca
2+

]i decreased towards 
the baseline values after removal of 10mM Ca

2+
 from the external solution. 

(D) An AR42J cell overexpressing Bcl-2. Similar protocol as in (C). The rate of Ca
2+

 extrusion after 
removal of 10mM external Ca

2+
 is much slower than in the control cell (shown in (A)).  

(E) The bar chart compares half times (τ1/2) of [Ca
2+

]i decrease towards the resting level following removal 
of external Ca

2+
 in Fura-2-loaded control AR42J cells (blue bar, n=44) and in AR42J cells overexpressing 

Bcl-2 (purple bar, n=127). Typical traces were presented in (C) and (D). 
 
Figure S4. Localization of Bcl-2 in Pancreatic Acinar Cells and AR42J Cells. 

(A) Coimmunolocalization of the Bcl-2 and the PMCA in a fixed preparation in a cluster of pancreatic 
acinar cells. The cells were immunostained with antibodies against Bcl-2 (Aa) and the PMCA (Ab); 
overlaid in (Bc). 

(B) (Ba) A section of a pancreatic acinar cell expressing fusion protein Bcl-2-GFP as shown in green. (Bb) 
The plasma membrane was stained with FM 1-64, which is shown in red. (Bc) Overlay of green and red 
fluorescence demonstrates partial colocalization (yellow) at the plasma membrane. 

(C) Coimmunolocalization of the Bcl-2-GFP and the PMCA in a fixed preparation of AR42J cells. The cells 
are expressing fusion protein Bcl-2-GFP – shown in green (Ca); and were immunostained with antibodies 
against the PMCA (red) (Cb); overlaid in (Cc). 
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Supplemental Figure 2 
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Supplemental Figure 3 
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Bcl-2 PMCA overlay A 

a b c 

Bcl-2-GFP PM (FM 1-64) overlay B 

C Bcl-2-GFP PMCA overlay 

Supplemental Figure 4 
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