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ABSTRACT

We have determined the nucleotide sequence of the 3'region of the rabies
genome (PV strain). This work is a first step in a project aimed at establi-
shing the complete primary structure. From the 3'nucleotide sequence of the
RNA genome, an octadecanucleotide complementary to the 3'extremity was cons-
tructed and used to prime cDNA synthesis. Two overlapping recombinant cDNA
clones hybridizing with the nucleoprotein mRNA (NmRNA) were isolated and
sequenced. The 1500 first nucleotides of the rabies genome cover two trans-
criptional units: the leader RNA and the NmRNA which was shown to be initia-
ted around residue 59 by S1 nuclease protection experiments. Comparison
between rabies PV and CVS strains up to residue 180 suggests a rapid evolu-
tion in the leader region. Studies of the sequence relationships between the
3'regions of two Rhabdoviruses, rabies virus and Vesicular Stomatitis Virus
(VSV), demonstrate that there is a segmented homology. Stretches of highly
conserved amino acids possibly involved in the interaction with the RNA geno-
me were observed in the N protein, despite a wide divergence in the remaining
sequence. In addition, the high homology between the transcription start and
stop signals reflects the conservation of a similar transcriptional mechanism
in these two non segmented negative strand RNA viruses.

INTRODUCTION

Rhabdoviridae family is divided into two main genus, Lyssavirus and
Vesiculovirus. Rabies virus, the prototype member of the Lyssavirus genus, is
a bullet shaped virus containing a non segmented negative strand RNA genome.
Rabies virion consists in a nucleocapsid core surrounded by a host derived
lipidic envelope. The nucleocapsid core is thought to contain all elements
necessary for the viral transcription (1). It is composed of the genomic RNA
(about 12 kb) associated with the nucleoprotein N (MW=58500), the polymerase
L (MW=170000) and the phosphoprotein M1 (MW=39500) whose position has been
reassigned from the envelope to the nucleocapsid core (2). Two membrane
proteins are found in the envelope: the protein M2 (MW=25000) on the inner-
side and the transmembrane glycoprotein G (MW=70500) which presents antigenic
spikes on the outside (3). As for the Vesicular Stomatitis Virus (VSV), the

prototype member of the Vesiculovirus genus, transcription of the rabies
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genomic RNA produces sequencially one leader RNA (4) and five polyadenylated
monocistronic mRNAs (5, 6) defining the gene order along the genome from 3'
to 5': leader, N, M1, M2, G and L (7).

Despite their analogical genome organization and similar transcriptative
and replicative strategy (6), rabies virus and VSV exhibit notable differen-
ces in their biological activity. While rabies virus has a slower infectious
cycle and releases lower yield of progeny virions (8), VSV has a greater cell
killing ability (9) and causes much greater inhibition of host cell macro-
molecular synthesis, in particular RNA synthesis, by a mechanism involving
the leader RNA (10). It was therefore interesting to compare the VSV genome
whose nucleotide sequence has been widely documented (11-15), with the rabies
virus genome about which relatively little is known. The only rabies sequen-
ces reported to date are those of the 3'end of the genome up to nucleotide
180 including the complete leader RNA coding region (4) and of the cDNA copy
of the glycoptétein GmRNA (16-18).

We have undertaken the cloning of the rabies genome by priming the cDNA
synthesis with an octadeca nucleotide complementary to the 3'end. In this
paper we describe cDNA clones corresponding to the 3'extremity of the rabies
genome including the leader RNA and the N protein genes. The 5'transcription
initiation site of NmRNA was deduced from Sl nuclease protection experiments.
The nucleotide sequence is compared with the corresponding region of VSV and
with the 3'end of the challenge rabies virus strain (CVS) genome (4).

MATERIALS AND METHODS
Virus growth and RNA purification

Pasteur strain of rabies virus (PV) was grown on Baby Hamster Kidney
cells (BHK-21) as previously described (19). Virions were purified from
culture supernatants by a method adapted from Arita and Atanasiu (20). To
isolate viral genomic RNA, purified virions were incubated with IOOrg/nl
proteinase K (Merck) in 1,52 SDS, 100mM Tris-HC1 pH7,5, 100mM NaCl, 10mM EDTA
for 30 min at 37°C, followed by two phenol-chloroform extractions (vol/vol)
and ethanol precipitation.

Extraction of total cellular RNA and selection of poly(A)*RNA by
0ligo(dT)-cellulose chromatography were performed as described (19, 21).
3'end labelling and sequencing of genomic RNA

Genomic RNA was 3'end labelled with (32P)Cp and T4 RNA ligase (22).
Exhaustive hydéolysis occured in 152 piperidin and the end nucleotide was
determined by thin layer chromatography on cellulose (23). Partial hydrolysis
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was performed in distilled water for 2.5 hours at 90°C before two-dimensional
electrophoresis homochromatography (23). Chemical RNA sequencing.was carried
out according to Peattie (24). Cleavage fragments were separated by 20% acry-
lamide-urea gel electrophoresis.

Cloning of the genomic RNA

1 (about 0,25 picomoles) of purified genomic RNA was annealed to a
10 fold excess (mole/mole) of synthetic primer and transcribed into cDNA as
described (25) with the following modifications: actinomycin D was omitted,
5U/Ml RNAsine (genofit) was added and incubation occurred for 2.5 hours at
42°C. The (32P) single stranded cDNA (106 cpm/4g) was either transcri-
bed in double stranded cDNA (26), or submitted to alkaline hydrolysis and gel
filtration (G 75 sephadex), before rehybridized with freshly purified genomic
RNA (ratio 1/5) during 2 hours at 65°C in Tris-HCl 20mM pH7.4, NaCl 300mM,
EDTA 1mM, SDS 0.1%. Hybrids cDNA-RNA or double stranded cDNA were treated
with S1 nuclease (25), phenol extracted and fractionated on 1.5% low-melting
point agarose gel or 5-20% sucrose gradient. Each class size was recovered
and inserted in the PstI site of pBR322 plasmid vectors by the dC/dG tailing
method (25). The transformation of the HB10l strain of Escherichia coli cells

was performed as described (25).

DNA sequencing, S1 protection experiments

Endonuclease cleavage fragments of pRb43 and pRb28 plasmids were sub-
cloned into M13 vectors (27) before enzymatic sequencing by the chain-termi-
nating inhibitors method (28). The 18-mer primer sequence was checked using
the chemical sequencing method of Maxam and Gilbert (29).

S1 nuclease protection experiments are described elsewhere (30).
Hybridization of cDNA with viral mRNAs

Total cellular RNA was electrophoresed through a 1.2% agarose gel
containing formaldehyde and transferred to nitrocellulose filters (Schleicher
& Schuell) according to Thomas (31). Filters were hybridized with high speci-
fic activity (32P)nick-translated cDNA probes (32) overnight at 42°C in
50% formamide.

For hybridization selection experiments, filters were saturated with
cDNA plasmids and hybridized with poly(A)YRNA from infected cells. Comple-

mentary viral mRNA was eluted and translated as described below.
In vitro translation of poly(A)+RNA

Preparation of mRNA dependent rabbit reticulocyte lysates, translational
conditions and analysis of translational products are described elsewhere
(21). Immunoprecipitations with monoclonal antibodies directed against the

nucleoprotein were carried out according to Shih (33).
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Figure 1l: 3'labelled genomic RNA was analysed (A) by two-dimensional electro-
phoresis homochromatography after random hydrolysis and (B) by 20% polyacry-
lamide gel electrophoresis after specific chemical cleavages. The resulting

sequence is:

A
3'OH-HQEQEEbUGUUGGUCUAGUUUCUUUUUUGUCUGUCGCAG.;3§f
B

Computer analysis

National Biomedical Research Foundation (NBRF) and PGtrans (34) protein
data banks were searched using the program of Wilbur and Lipman (35) with the
following parameters: K-tuple size=2, window size=40 , gap penality=2.
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Figure 2: (A). 32p nick-translated PRb43 insert was hybridized to a
Northern blot of total RNA from rabies PV infected (lane 2) or non-infected
(lane 1) BHK-21 cells.

(B). 12% SDS polyacrylamide gel separation of in vitro translation
products of mRNA selected by hybridization with pRb43 insert among
poly(A)tRNA of infected (lane 3) or non-infected (lane 2) BHK-21 cells.
Lanes 1 and 4 represent the immunoprecipitable products from lanes 2 and 3
respectively, using a mixture of 3 monoclonal antibodies directed against
N protein. Lanes PV show proteins of purified rabies virus (PV strain).

RESULTS
Cloning strategy of the 3'region of the rabies genomic RNA

With the aim to establish the primary structure of the rabies genome, we
have determined the 3'terminal sequence of the genomic RNA. The 12,000
nucleotide long RNA was isolated by electrophoresis on low-melting point
agarose gel and 3'end-labelled as described in Methods. Sequence determina-
tion was performed using three different techniques: (1) the 3'terminal
nucleotide was identified as Up by thin layer chromatography (data not
shown); (2) the sequence up to nucleotide 10 was determined by two-dimensio-
nal electrophoresis homochromatography (Figure 1A); (3) the sequence from
nucleotide 7 to nucleotide 39 was determined by RNA chemical sequencing
(Figure 1B). From the RNA sequence, we have synthesized a 18-mer DNA comple-
mentary to the 3'end to prime cDNA synthesis. cDNA-RNA hybrids or double
stranded cDNA were inserted in pBR322 plasmid vectors.

To identify rabies recombinant clones, cDNA inserts were hybridized with
RNA from infected or non infected BHK-21 cells. Figure 2A shows the results
of Northern blot hybridization experiments with the clone pRb43 (800 bp). The
blot of infected cell total RNA (lane 2) gave a single additional hybridiza-
tion band corresponding to a size of 1600 nucleotides when probed with
(32P)nick-translated insert. This is in agreement with the length expec-—
ted for the rabies NmRNA (6). In order to show that this mRNA effectively
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encodes the N protein, pRb43 plasmid DNA was used in hybridization selection
experiments. Hybridized mRNA was eluted and in vitro translated in a rabbit
reticulocyte lysate. Comparison of lanes 2 and 3 of Figure 2B shows that the
pRb43 insert selects an mRNA in infected cell extracts which directs the
synthesis of a protein comigrating with the rabies N protein of PV strain
(lanes PV). Furthermore, the translation product is immunoprecipitated by a
mixture of 3 monoclonal antibodies directed against N protein (lane 4).
Sequencing studies of cDNA clones, mapping of the 5'start of NmRNA

Two overlapping recombinant clones were used for sequence determination

according to the strategy outlined in Figure 3. The resulting sequence,
presented as DNA(+) sense, was determined until residue 1500. The 39 terminal
nucleotides, complementary to the 3'extremity of the viral RNA, allow us to
define the polarity of the insert.

Only one open reading frame uninterrupted until residue 1421 could be
obtained, the other two contain multiple stop codons. Two ATG codons at posi-
tion 41 and 71 respectively are potential initiation codons. In order to
determine which was used, we carried out S1 nuclease protection experiments
to define the transcription initiation site of NmRNA. As shown in Figure 4,
the protected probe maps around residue Agp (genomic sense). Because the
first 32 nucleotides of each sequencing reaction belong to the cloning system
(universal primer and M13mp701 cloning sites) and are sensitive to nuclease
S1 digestion, the transcription of NmRNA begins around residue Usg (geno-
mic sense). This result is in agreement with the previous observation that a
leader RNA species of 55 to 58 nucleotides long is encoded by the 3' extre-
mity of the rabies genome (4). Thus, the nucleoprotein must be initiated at
position 71.

The deduced amino acid sequence (Figure 3) consists of 450 residues.
Consistent with the VSV nucleoprotein (12), it has a small excess of basic
amino acids and a calculated molecular weight (50550) slightly lower than the

Figure 3: The sequence of 1500 nucleotides at the 3'end of the rabies PV
genome (presented as complementary DNA(+) sense) was established after sub-
cloning restriction fragments of pRb43 and pRb28 inserts into M13 vector and
enzymatic sequencing. The direction and extent of nucleotide reading are
indicated by solid arrows. The dotted arrow represents the extent of genomic
RNA sequencing. The deduced N protein sequence is presented. Wavy lanes indi-
cate the leader RNA, NmRNA and M1mRNA transcription start as well as the
3'end of NmRNA. The two potential N protein initiation codons with their
respective transcription initiation site, the NmRNA polyadenylation signal
and the postulated MImRNA initiation site are underlined. The putative promo-
tor sequence of the MImRNA is boxed. The mismatched nucleotides in the CVS
strain relatively to the PV sequence are notified up to residue 180 (vertical
arrow) (4).
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Figure 4: Mapping of the 5'end of NmRNA.

The Alul fragment from nucleotide 342 (genomic numeration) of pRb43 insert to
the proximal Alul site in pBR322, was subcloned into the HincII site of
M13mp701. Sequence corresponding to the genome is boxed and N protein coding
region is hatched. A and E stand for Alul and EcoRI sites respectively.
Uniformly 32p jabelled single stranded DNA probe of genomic sense (DNA -)

was synthesized. 5 104 cpm was hybridized with 1pg or A of poly(A)*RNA
from BHK-21 infected cells (lanes 2 and 3 respecrsvely) or non_infected cells
(lanes 4 and 5 respectively) and digested with S1 nuclease. 103 cpm of
undigested probe is shown in lane 1. The protected probe position is indica-
ted with respect to enzymatic sequencing tracks (lanes A,C,G,T). Poly d(C)
track constitutes the end of the pRb43 insert sequence. The wavy lane desi-
gnates the transcription start point.

apparent molecular weight estimated from polyacrylamide gel electrophoresis
(58500)(5). The deficiency in CG dinucleotides, widely reported among negati-
ve strand RNA viruses, is also observed along the rabies NmRNA and results in
a clear bias against CGN, NCG and NNC-GNN codons.
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DISCUSSION

All non segmented negative strand RNA viruses use the same basic mecha-
nism for the multiplication: the genomic RNA (-) is first transcribed into
monocistronic RNAs (+) (leader and mRNAs), then it is replicated into a
complete genome (+) which will serve as template for the synthesis of novel
genomic RNAs (-). Comparative studies between the VSV and rabies genomes can
allow us to define more precisely the sequences involved in the transcription
and replication. Since the RNA genome is always found associated with the
nucleoprotein in the Rhabdovirus genus, we can expect to characterize in the
N protein, the segments which are important for the formation of the nucleo-
capsid.

The sequence reported here includes two transcriptional units: the
leader RNA and the nucleoprotein mRNA.
The leader RNA

The leader RNA is a 3' transcription product which has been known for a
long time in VSV (36) and more recently demonstrated in the CVS strain of the
rabies virus (4)(Figure 3). The 3'location of the leader region implies that
such essential events as the initiation of transcription and replication
(37), the switching between these two functions (38, 39) and the initiation
of encapsidation (40) take place here. Kurilla has already shown some common
features between VSV and rabies leader RNA: they are of similar length (about
50 nucleotides) with a high content of A residues (50%), they both initiate
with the same trinucleotide (ACG) which seems to be conserved thoughout the
Rhabdoviridae family (14) and have a very homologous 3'end. Our results on
the rabies PV strain strengthens the idea of such a relationships. Neverthe-
less, comparison of the PV and CVS strains indicates that certain sequences
are less important than had previously been thought. For example, the hexa-
nucleotide 3';,UUUGGU;95' (genomic sense) is present in the CVS
strain as throughout the Vesiculovirus genus (one nucleotide upstream) where
it is thought to be implicated in the RNA synthesis initiation (14). Since
this hexanucleotide is absent from the PV strain due to one U/C change at
position 15 and one G/A change at position 17, it is uncertain that it plays
the same role in the rabies genome. Furthermore the two rabies strains show
11 mismatches between positions 1 and 180 (6%). It is of interest to observe
that this divergence is mainly located in the leader region (8 differences
=147%), while only two silent substitutions are found in the nucleoprotein
coding region (2.5%). Consequently, the leader region appears to be an area

of rapid evolution in the rabies virus genome. Sequence studies of other
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Figure 5: Alignment of the rabies PV and VSV Indiana nucleoproteins using the
computer program of Wilbur and Lipman (35) with the K-tuple size=1, window
size=40 and gap penality=1 parameters. Four particularly conserved regions
are boxed.

rabies strains should permit us to better elucidate the variation in the
leader region and to characterize the essential sequences.

The nucleoprotein

Using the computer program of Wilbur et Lipman (35), we have searched in
protein data banks for sequences which may have homology with the rabies
nucleoprotein. The only very significant homology (score 4,4) was found with
the nucleoprotein of VSV. Using the same program, the previously reported
homology between the glycoproteins of the two viruses (41), is lower (score
3,3). Figure 5 shows one optimal alignment between rabies PV and VSV Indiana
N protein. The invariant amino acids are not uniformly located along the
sequence but some regions seem more conserved, such as between amino acids 72
and 112 (41,5%), 140 and 150 (54,5%), 225 and 247 (39%), 268 and 302 (48,5%).
In this last region, a stretch of 10 but one consecutive invariant amino
acids is particularly remarkable (293 to 302). It is difficult to assign a
function to these conserved regions on the sole consideration of sequencing
data. Nevertheless, it is tempting to. suggest that they are involved in the
interaction of the nucleoprotein with the RNA genome. Since another homology,
but at a lower level (score 3,2), can also be observed between the nucleo-
proteins of rabies virus and Sendal virus, a member of Paramyxovirus genus,
the nucleoprotein seems to be relatively conserved throughout the non segmen-
ted negative strand RNA viruses. Further comparison with nucleoproteins of
such other viruses should allow us to define particularly conserved amino
acids that could be essential for the formation of the nucleocapsid

structure.
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The flanking gene and intergenic sequences

Intergenic and flanking gene sequences have already been determined for
VSV (15). Three consensus sequences were characterized in the non protein
coding regions: the 5'mRNA initiation site, the intergenic segment whose
complement does not appear in the mRNA and the 3'end of mRNA with its poly-
adenylation signal (A7) (Figure 6).

S1 mapping protection experiments demonstrate that NmRNA transcription
initiates around position 59 with the pentanucleotide 5'AACAC 3'. It differs
slightly from the canonical pentanucleotide 5'AACAG 3' of the VSV 5'mRNA
initiation site. Interestingly, such a VSV consensus site, but one nucleo-
tide, appears in the middle of the leader RNA of the rabies PV strain (posi-
tion 27) 14 nucleotides upstream from the 41ATG codon in the open reading
frame. Although this structure could be a putative initiation site of NmRNA,
S1 mapping experiments do not show any detectable transcription start at
position 27 (Figure 4). On the other hand, the pentanucleotide 5'AACAC 3'
beginning the rabies NmRNA, has also been involved in vitro in the initiation
of one VSV intracistronic transcription event (42). Downstream from the N
protein coding sequence, this pentanucleotide also appears in position 1485
and we therefore postulate that it represents the transcription initiation
site of the MImRNA. This assumption is strengthened by the finding of the
sequence 5'ATG(A)73' three nucleotides upstream (position 1473 to 1482),
closely similar (one nucleotide less) to the consensus 3'end of VSV mRNAs.
This sequence must represent the polyadenylation signal of rabies NmRNA.
Furthermore, the sequence 5'ATATC 3' beginning 21 nucleotides upstream from
the MImRNA transcription start site, looks like the promoter sequence prece-
ding each VSV mRNA (15). However, in contrast to VSV, a similar promoter
sequence for the NmRNA is absent in the rabies leader region. Finally, the
3'stop of NmRNA and the 5'start of MImRNA define a two nucleotides long
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intergenic region (GA in the genome) identical to most of VSV intergenic
segments. All these remarks are summarized in Figure 6.

The major conclusion of these results is that VSV and rabies virus are
homologous only in limited regions. Despite a wide divergence of the nucleo-
protein sequence, some stretches possibly involved in the interaction with
the genomic RNA are highly conserved. Furthermore, as a result of the identi-
cal multiplication mechanism of these non segmented negative strand RNA
viruses, a high conservation of transcriptional start and stop signals ;s
observed. There is a strong homology between the 3'end of the rabies NmRNA
and the corresponding consensus sequence of VSV genes while the 5' start
sites are less homologous. Nevertheless, an extensive comparison of rabies N
and M1 mRNA S5'start sites, indicates that they both initiate with the sequen-
ce 5'AACACCPyCT, Py being T and C respectively. Further sequence analysis of
the genome is needed to elucidate a rabies 5'transcription start consensus

sequence.
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