data_shelxl _audit_creation_method SHELXL-97 _chemical_name_systematic ; ? ; _chemical_name_common ? _chemical_melting_point ? _chemical_formula_moiety 'C9 H15 Br O2' _chemical_formula_sum 'C9 H15 Br O2' _chemical_formula_weight 235.12 loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source 'C' 'C' 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'H' 'H' 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'O' 'O' 0.0106 0.0060 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'Br' 'Br' -0.2901 2.4595 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' _symmetry_cell_setting Orthorhombic _symmetry_space_group_name_H-M P212121 loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-x+1/2, -y, z+1/2' 'x+1/2, -y+1/2, -z' '-x, y+1/2, -z+1/2' _cell_length_a 6.3044(12) _cell_length_b 9.775(2) _cell_length_c 16.431(3) _cell_angle_alpha 90.00 _cell_angle_beta 90.00 _cell_angle_gamma 90.00 _cell_volume 1012.6(3) _cell_formula_units_Z 4 _cell_measurement_temperature 153(2) _cell_measurement_reflns_used 21649 _cell_measurement_theta_min 3.0 _cell_measurement_theta_max 27.5 _exptl_crystal_description colorless _exptl_crystal_colour needle _exptl_crystal_size_max 0.46 _exptl_crystal_size_mid 0.08 _exptl_crystal_size_min 0.05 _exptl_crystal_density_meas ? _exptl_crystal_density_diffrn 1.542 _exptl_crystal_density_method 'not measured' _exptl_crystal_F_000 480 _exptl_absorpt_coefficient_mu 4.021 _exptl_absorpt_correction_type multi-scan _exptl_absorpt_correction_T_min 0.698 _exptl_absorpt_correction_T_max 1.00 _exptl_absorpt_process_details ; Abscor. T. Higashi (2001). The Rigaku Corporation, Tokyo, Japan. ; _exptl_special_details ; ? ; _diffrn_ambient_temperature 153(2) _diffrn_radiation_wavelength 0.71075 _diffrn_radiation_type MoK\a _diffrn_radiation_source 'fine-focus sealed tube' _diffrn_radiation_monochromator graphite _diffrn_measurement_device_type 'Rigaku SCX-Mini with Mercury CCD' _diffrn_measurement_method \w-scans _diffrn_detector_area_resol_mean ? _diffrn_standards_number ? _diffrn_standards_interval_count ? _diffrn_standards_interval_time ? _diffrn_standards_decay_% ? _diffrn_reflns_number 21542 _diffrn_reflns_av_R_equivalents 0.1008 _diffrn_reflns_av_sigmaI/netI 0.0489 _diffrn_reflns_limit_h_min -8 _diffrn_reflns_limit_h_max 8 _diffrn_reflns_limit_k_min -12 _diffrn_reflns_limit_k_max 12 _diffrn_reflns_limit_l_min -21 _diffrn_reflns_limit_l_max 21 _diffrn_reflns_theta_min 3.24 _diffrn_reflns_theta_max 27.48 _reflns_number_total 2319 _reflns_number_gt 2137 _reflns_threshold_expression >2sigma(I) _publ_section_references ; Altomare A., Burla M.C., Camalli M., Cascarano G.L., Giacovazzo C., Guagliardi A., Moliterni A.G.G., Polidori G.,Spagna R. Sir97. (1999) J. Appl. Cryst. 32, 115-119. Farrugia, L. J. (1999) J. Appl. Cryst., 32, 837-838. An Integrated System of Windows Programs for the Solution, Refinement and Analysis of Single Crystal X-ray Diffraction Data. Hooft, R. W. W., Straver, L. H. and Spek, A. L. (2008). J. Appl. Cryst., 41, 96-103. Determination of absolute structure using Bayesian statistics on Bijvoet differences. Sheldrick, G. M. (2008). SHELXL-97. Acta Cryst., A64, 112-122. Spek, A. L. (1998) PLATON, A Multipurpose Crystallographic Tool, Utrecht University, Utrecht, The Netherlands. ; _publ_section_acknowledgements ; The data were collected using instrumentation purchased with funds provided by the National Science Foundation Grant No. 0741973. ; _computing_data_collection 'CrystalClear (Rigaku Inc., 2008)' _computing_cell_refinement 'CrystalClear (Rigaku Inc., 2008)' _computing_data_reduction 'CrystalClear (Rigaku Inc., 2008)' _computing_structure_solution ; SIR97 - Altomare A., Burla M.C., Camalli M., Cascarano G.L., Giacovazzo C., Guagliardi A., Moliterni A.G.G., Polidori G.,Spagna R. ; _computing_structure_refinement 'XL SHELXTL/PC, Siemens Analytical' _computing_molecular_graphics 'XP SHELXTL/PC, Siemens Analytical' _computing_publication_material ? _chemical_absolute_configuration ad # syn absolute configuration from synthetic procedure # ad absolute configuration from anomalous dispersion effects # rm absolute configuration from reference to a chiral # reference molecule of known abs. conf. # Hooft, R. W. W., Straver, L. H. and Spek, A. L. (2008). J. Appl. Cryst., # 41, 96-103. Determination of absolute structure using Bayesian # statistics on Bijvoet differences. _refine_special_details ; Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The absolute configuration was determined by the method of Flack (1983) and corroborated by use of the Hooft y-parameter (Hooft, Straver and Spek, 2008). The Hooft y-parameter refined to 0.029(10). ; _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'calc w=1/[\s^2^(Fo^2^)+(0.0322P)^2^+0.4119P] where P=(Fo^2^+2Fc^2^)/3' _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens geom _refine_ls_hydrogen_treatment constr _refine_ls_extinction_method none _refine_ls_extinction_coef ? _refine_ls_abs_structure_details 'Flack H D (1983), Acta Cryst. A39, 876-881' _refine_ls_abs_structure_Flack 0.030(15) _refine_ls_number_reflns 2319 _refine_ls_number_parameters 113 _refine_ls_number_restraints 0 _refine_ls_R_factor_all 0.0394 _refine_ls_R_factor_gt 0.0354 _refine_ls_wR_factor_ref 0.0852 _refine_ls_wR_factor_gt 0.0830 _refine_ls_goodness_of_fit_ref 1.068 _refine_ls_restrained_S_all 1.068 _refine_ls_shift/su_max 0.001 _refine_ls_shift/su_mean 0.000 loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group C1 C 1.2644(4) 0.4130(4) 0.99900(18) 0.0270(7) Uani 1 1 d . . . C2 C 1.1245(5) 0.4175(3) 1.07248(19) 0.0277(7) Uani 1 1 d . . . H2A H 1.1965 0.4645 1.1182 0.033 Uiso 1 1 calc R . . H2B H 1.0850 0.3240 1.0900 0.033 Uiso 1 1 calc R . . C3 C 0.9298(5) 0.4973(4) 1.04508(18) 0.0279(7) Uani 1 1 d . . . H3A H 0.9422 0.5953 1.0594 0.034 Uiso 1 1 calc R . . H3B H 0.7987 0.4597 1.0696 0.034 Uiso 1 1 calc R . . C4 C 0.9326(4) 0.4764(3) 0.95262(18) 0.0218(6) Uani 1 1 d . . . H4 H 0.8515 0.3910 0.9403 0.026 Uiso 1 1 calc R . . C5 C 0.8383(4) 0.5912(3) 0.90213(17) 0.0189(6) Uani 1 1 d . . . H5 H 0.6936 0.6076 0.9251 0.023 Uiso 1 1 calc R . . C6 C 0.8057(5) 0.5693(3) 0.81034(17) 0.0214(6) Uani 1 1 d . . . C7 C 0.6815(6) 0.4350(3) 0.7978(2) 0.0333(8) Uani 1 1 d . . . H7A H 0.5552 0.4351 0.8326 0.050 Uiso 1 1 calc R . . H7B H 0.7719 0.3571 0.8122 0.050 Uiso 1 1 calc R . . H7C H 0.6383 0.4274 0.7407 0.050 Uiso 1 1 calc R . . C8 C 0.6709(6) 0.6864(4) 0.7771(2) 0.0361(8) Uani 1 1 d . . . H8A H 0.7444 0.7734 0.7862 0.054 Uiso 1 1 calc R . . H8B H 0.5337 0.6878 0.8051 0.054 Uiso 1 1 calc R . . H8C H 0.6482 0.6732 0.7186 0.054 Uiso 1 1 calc R . . C9 C 1.0133(6) 0.5618(4) 0.76248(18) 0.0359(7) Uani 1 1 d . . . H9A H 0.9820 0.5494 0.7045 0.054 Uiso 1 1 calc R . . H9B H 1.0978 0.4843 0.7821 0.054 Uiso 1 1 calc R . . H9C H 1.0932 0.6468 0.7701 0.054 Uiso 1 1 calc R . . O1 O 1.1547(3) 0.4520(2) 0.93196(13) 0.0259(5) Uani 1 1 d . . . O2 O 1.4478(3) 0.3804(2) 0.99477(15) 0.0372(6) Uani 1 1 d . . . Br1 Br 0.99994(5) 0.76133(3) 0.922874(18) 0.03447(12) Uani 1 1 d . . . loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 C1 0.0292(18) 0.0200(16) 0.0319(19) 0.0040(13) 0.0008(15) 0.0000(12) C2 0.0254(16) 0.0343(17) 0.0236(16) 0.0056(14) -0.0023(13) 0.0002(12) C3 0.0273(16) 0.0365(18) 0.0201(16) 0.0049(13) -0.0002(13) 0.0077(13) C4 0.0185(14) 0.0242(15) 0.0226(15) 0.0016(12) -0.0007(12) 0.0023(11) C5 0.0173(13) 0.0176(14) 0.0217(14) -0.0041(11) -0.0002(11) -0.0013(11) C6 0.0244(15) 0.0196(15) 0.0202(14) 0.0011(11) -0.0025(12) -0.0026(12) C7 0.046(2) 0.0284(18) 0.0253(17) -0.0048(13) -0.0048(15) -0.0146(16) C8 0.042(2) 0.0326(19) 0.0333(19) 0.0044(15) -0.0116(16) 0.0052(15) C9 0.0370(18) 0.0476(18) 0.0231(15) -0.0015(13) 0.0086(17) -0.004(2) O1 0.0196(10) 0.0330(13) 0.0253(11) 0.0031(10) 0.0031(9) 0.0072(9) O2 0.0170(12) 0.0418(14) 0.0528(15) 0.0071(11) 0.0018(10) 0.0072(9) Br1 0.0434(2) 0.02420(17) 0.0358(2) -0.00398(11) -0.01025(16) -0.01075(17) _geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag C1 O2 1.201(3) . ? C1 O1 1.356(3) . ? C1 C2 1.496(4) . ? C2 C3 1.522(4) . ? C2 H2A 0.9900 . ? C2 H2B 0.9900 . ? C3 C4 1.533(4) . ? C3 H3A 0.9900 . ? C3 H3B 0.9900 . ? C4 O1 1.460(4) . ? C4 C5 1.517(4) . ? C4 H4 1.0000 . ? C5 C6 1.537(4) . ? C5 Br1 1.980(3) . ? C5 H5 1.0000 . ? C6 C8 1.527(4) . ? C6 C9 1.528(5) . ? C6 C7 1.542(4) . ? C7 H7A 0.9800 . ? C7 H7B 0.9800 . ? C7 H7C 0.9800 . ? C8 H8A 0.9800 . ? C8 H8B 0.9800 . ? C8 H8C 0.9800 . ? C9 H9A 0.9800 . ? C9 H9B 0.9800 . ? C9 H9C 0.9800 . ? loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag O2 C1 O1 121.3(3) . . ? O2 C1 C2 128.5(3) . . ? O1 C1 C2 110.3(2) . . ? C1 C2 C3 104.6(2) . . ? C1 C2 H2A 110.8 . . ? C3 C2 H2A 110.8 . . ? C1 C2 H2B 110.8 . . ? C3 C2 H2B 110.8 . . ? H2A C2 H2B 108.9 . . ? C2 C3 C4 102.5(2) . . ? C2 C3 H3A 111.3 . . ? C4 C3 H3A 111.3 . . ? C2 C3 H3B 111.3 . . ? C4 C3 H3B 111.3 . . ? H3A C3 H3B 109.2 . . ? O1 C4 C5 111.7(2) . . ? O1 C4 C3 105.3(2) . . ? C5 C4 C3 116.0(3) . . ? O1 C4 H4 107.8 . . ? C5 C4 H4 107.8 . . ? C3 C4 H4 107.8 . . ? C4 C5 C6 119.0(2) . . ? C4 C5 Br1 109.00(18) . . ? C6 C5 Br1 110.80(19) . . ? C4 C5 H5 105.7 . . ? C6 C5 H5 105.7 . . ? Br1 C5 H5 105.7 . . ? C8 C6 C9 109.2(3) . . ? C8 C6 C5 108.7(2) . . ? C9 C6 C5 113.4(2) . . ? C8 C6 C7 107.9(3) . . ? C9 C6 C7 109.0(2) . . ? C5 C6 C7 108.5(2) . . ? C6 C7 H7A 109.5 . . ? C6 C7 H7B 109.5 . . ? H7A C7 H7B 109.5 . . ? C6 C7 H7C 109.5 . . ? H7A C7 H7C 109.5 . . ? H7B C7 H7C 109.5 . . ? C6 C8 H8A 109.5 . . ? C6 C8 H8B 109.5 . . ? H8A C8 H8B 109.5 . . ? C6 C8 H8C 109.5 . . ? H8A C8 H8C 109.5 . . ? H8B C8 H8C 109.5 . . ? C6 C9 H9A 109.5 . . ? C6 C9 H9B 109.5 . . ? H9A C9 H9B 109.5 . . ? C6 C9 H9C 109.5 . . ? H9A C9 H9C 109.5 . . ? H9B C9 H9C 109.5 . . ? C1 O1 C4 110.3(2) . . ? loop_ _geom_torsion_atom_site_label_1 _geom_torsion_atom_site_label_2 _geom_torsion_atom_site_label_3 _geom_torsion_atom_site_label_4 _geom_torsion _geom_torsion_site_symmetry_1 _geom_torsion_site_symmetry_2 _geom_torsion_site_symmetry_3 _geom_torsion_site_symmetry_4 _geom_torsion_publ_flag O2 C1 C2 C3 166.9(4) . . . . ? O1 C1 C2 C3 -13.4(4) . . . . ? C1 C2 C3 C4 23.8(3) . . . . ? C2 C3 C4 O1 -26.3(3) . . . . ? C2 C3 C4 C5 -150.3(3) . . . . ? O1 C4 C5 C6 68.2(3) . . . . ? C3 C4 C5 C6 -171.2(3) . . . . ? O1 C4 C5 Br1 -60.2(3) . . . . ? C3 C4 C5 Br1 60.4(3) . . . . ? C4 C5 C6 C8 169.0(3) . . . . ? Br1 C5 C6 C8 -63.5(3) . . . . ? C4 C5 C6 C9 -69.4(3) . . . . ? Br1 C5 C6 C9 58.1(3) . . . . ? C4 C5 C6 C7 51.9(3) . . . . ? Br1 C5 C6 C7 179.4(2) . . . . ? O2 C1 O1 C4 175.9(3) . . . . ? C2 C1 O1 C4 -3.9(4) . . . . ? C5 C4 O1 C1 146.2(3) . . . . ? C3 C4 O1 C1 19.5(3) . . . . ? _diffrn_measured_fraction_theta_max 0.999 _diffrn_reflns_theta_full 27.48 _diffrn_measured_fraction_theta_full 0.999 _refine_diff_density_max 0.697 _refine_diff_density_min -0.420 _refine_diff_density_rms 0.076