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Methods: 
 
1. Omics-guided reconstruction and functional validation of RAW 264.7 network. 
 
A murine macrophage (RAW 264.7) metabolic network was reconstructed by mapping gene 
expression and proteomic data to determine metabolic reaction activities. A full workflow is 
presented in Figure S1. First, we used a NCBI HomoloGene-based mapping to the global human 
metabolic reconstruction, Recon 1 (Duarte et al. 2007), as the basal framework for constructing a 
murine RAW 264.7 cell line metabolic network. A similar approach was taken for a recently 
published homolog-based mouse reconstruction (Sigurdsson et al. 2010).  Given the ~92% 
homology between the human and mouse genomes, this network approach was used in lieu of a 
previously reconstructed mouse metabolic network (Sheikh et al. 2005) as the Homologene-
based mapping provided: (1) higher genomic coverage, (2) more extensive cellular 
compartmentalization of reactions, and (3) readily available gene-protein-reaction (GPR) 
associations for high-throughput data mapping.     
 
We utilized two established algorithms (GIMME and iMAT) and a novel algorithm (GIMMEp) 
to construct the RAW 264.7 cell line network from high-throughput data. The GIMME algorithm 
was improved upon its implementation into a transcripto-proteomic approach. GIMMEp 
constructs separate sub-networks that each satisfies one of the proteome-defined objective 
functions of the RAW macrophage cell (see Supplementary Data for the list of 382 proteome-
mapped metabolic reactions).  Objective functions pertaining to biomass growth and nitric oxide 
synthase activities were also evaluated.  The list of reactions (and associated genes) in the 
separate predicted sub-networks was then combined to generate a full murine macrophage-
specific metabolic networkThe “GIMMEp” approach is very similar to a recent tissue building 
algorithm (MBA (Jerby et al. 2010)). There are however two notable differences, 1) GIMMEp 
chooses the more biologically active path to link core reactions rather than the shortest path, and 
2) GIMMEp does not remove flux carrying reactions that do not have gene association resulting 
in a larger model than MBA. We also implemented a traditional version of GIMME, optimizing 
for macrophage biomass (GimmeBM). Exchange inputs were set at arbitrary values of -1 for 
metabolites defined in DMEM media.  Finally, we implemented iMat (Shlomi et al. 2008) to 
predict a macrophage-specific network based on the flux distribution most consistent with the 
omics data.  
 
We first compared the content of the metabolic networks to the gene expression and proteome 
experimental data to verify the accuracy of the predicted networks (Table S1).  The GIMMEp 
metabolic network contained 809 genes, 1026 intracellular reactions, and 552 unique 
metabolites. The predicted subnetwork that satisfied only biomass growth (GimmeBM) was 
substantially smaller, containing 446 genes, 424 intracellular reactions, and 304 unique 
metabolites, and resulted in a substantially lower recall of genes and protein-associated reactions.  
This indicates that a single objective function was not sufficient in predicting a comprehensive 
metabolic network using the GIMME approach and additional tested objective functions 
improved the comprehensiveness of the data-based predictions. The iMat sub-network contains 
938 genes, 1,327 intracellular reactions, and 714 unique metabolites and yielded a higher recall 
in the number of activated genes, an expected result given that the algorithm’s objective is to 
achieve a sub-network optimally correlated with the gene expression data.  The reaction recall, 
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however, was comparable between the two approaches with both accounting for ~73% of the 
metabolic reactions associated with the RAW 264.7 macrophage proteomic data (Table S1). 
 
The physiological capabilities of the GIMMEp and iMat metabolic networks were also evaluated 
using nutrient uptake rates derived from in vitro experimental data sets for murine macrophages 
(see Materials and Methods in main text).  In order to test the metabolic functionality of the 
mouse macrophage model, we compared the ability of the network to perform the published 288 
metabolic functions of Recon 1 (Duarte et al. 2007). To characterize the metabolic functionality 
of the three algorithm-derived networks as well as the reconciled model, the ability of the 
networks to complete the 288 metabolic functions in Recon 1 were assessed. For each test, sink 
reactions were added for the metabolites in question, and FBA was used to determine whether a 
feasible non-zero solution could be attained. The tests were performed by utilizing the exchange 
constraints set from literature and modeling requirements. 
 
The three networks, GimmeBM, GIMMEp, and iMat, performed quite differently (Table S1). 
GimmeBM’s performance represented the basal functionality of the three metabolic models, as 
the sole objective of the algorithm was to produce a biomass flux (Table S1). The GIMMEp and 
iMat draft reconstructions have a more comprehensive functionality as shown by passing the 
majority of the tests. The GIMMEp and iMat models have similar functionality across all 
subsystems except for lipid metabolism due to the iMat’s lack of ability to produce triglycerides 
and certain glycerophospholipids. The iMat model was also unable generate biomass. The 
GIMME algorithm conserves functions when mapping expression data while the iMat algorithm 
conserves reaction numbers, thus it was expected that the GIMMEp reconstruction would have a 
higher functionality. 
 
The GIMMEp and iMat models were reconciled by manually curating discrepant reactions 
(based on discrepancies in metabolic functionalities) in the two draft reconstructions, with the 
resulting reconciled model having more metabolic functionality than either model (Table S1 and 
Figure S2). The reconciled network was more similar to GIMMEp than iMat in reaction and 
metabolite number as fewer active reactions from the iMat model were implicated in differential 
metabolic functionality. The full RAW 264.7 macrophage metabolic model is provided in the 
supplementary material. 
 
2. Cell culture and stimulation 
 
RAW 264.7 (ATTC) murine macrophage-like cell line was grown at 37 ºC and 5% CO2 
atmosphere in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10% heat-
inactivated fetal bovine serum and Penicillin (100 U/mL)-Streptomycin (100 µg/mL). The 
samples were prepared in two biological replicates. For each biological replicate, cells were 
grown in parallel with independent set of media. Cells were seeded at a density of 1.0e6 
cells/well in 6-wells plates, grown overnight and stimulated 0, 1, 2, 4 and 24 hours with 100 
ng/mL LPS, a TLR4 agonist (from Salmonella typhimurium, cat # L6143, Sigma-Aldrich) 
diluted in fresh medium. After stimulation, cells were washed twice with Dulbecco’s PBS, and 
either treated with RNA Later (Qiagen) for transcriptomic analysis or lysed with 100 mM 
NH4HCO3, 1% CHAPS and 0.1% SDS for proteomic analysis. For each sample, the content of 
two wells were pooled together to obtain enough material for analysis. 
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3. Sample preparation for proteomic analysis 
 
Cell extracts were sonicated three times for 30 s each, 100% amplitude and 0.5 pulse (UTR200, 
Hielscher). After sonication, extracts were centrifuged for 20 min at 4 ºC and 16,000 xg, and 
quantified by BCA assay according to the manufacturer recommendations (Thermo Scientific). 
The supernatants were collected and precipitated for 20 min on an ice bath. The samples were 
centrifuged (20 min at 4 ºC and 16,000 xg), the protein pellets were washed with cold acetone 
and centrifuged 5 min at 4 ºC and 16,000 xg. The resulting pellets were dissolved in a 
concentration of 5 mg/mL in 100 mM NH4HCO3, 7 M urea, 2 M thiourea and 5 mM DTT. After 
reducing for 15 min at 50 ºC, the cysteine residues were alkylated for 30 min at room 
temperature in the presence of 10 mM iodoacetamide. The solutions were 5-fold diluted with 25 
mM NH4HCO3 and the proteins were digested overnight with sequencing-grade trypsin (1/50 
enzyme to substrate ratio). The pH of the samples were adjusted to ~2.5 and peptides were 
purified using 1 mL 100 mg strong cation-exchange (SCX) SPE cartridges using an automated 
station (GX-274, Gilson). The cartridges were washed with methanol, 10 mM ammonium 
formate (pH 3.0)/25% acetonitrile (ACN), 500 mM ammonium formate (pH 6.8)/25% ACN and 
water, before being equilibrated with 10 mM ammonium formate (pH 3.0)/25% ACN. After 
loading the samples, cartridges were washed with with 10 mM ammonium formate (pH 3.0)/25% 
ACN, and the peptides were eluted with methanol:water:NH4OH (80:15:5, v:v:v) and 
concentrated in the speed vac. Resulting peptides were quantified by BCA assay. 
 
4. Liquid chromatography-tandem mass spectrometry analysis 
 
Digested peptide aliquots from cells stimulated with LPS were pooled by stimulus into two 
samples and each was separated in 24 fractions by high pH reverse chromatography, essentially 
as described by Wang et al (Wang et al. 2011). Each fraction or unfractionated sample was 
submitted to liquid chromatography-tandem mass spectrometry analysis. Peptides were loaded 
into capillary columns (75 µm x 65 cm, Polymicro) packed with C18 beads (3 µm particles, 
Phenomenex) connected to a custom-made 4-column LC system (Livesay et al. 2008). The 
elution was performed in an exponential gradient from 0-100% B solvent (solvent A: 0.1% FA; 
solvent B: 90% ACN/0.1% FA) in 100 min with a constant pressure of 10,000 psi and flow rate 
of approximately 400 nL/min. Eluting peptides were directly analyzed either on a linear ion-trap 
(LTQ XL, Thermo Scientific, San Jose, CA) (fractionated samples) or an orbitrap (LTQ Orbitrap 
XL, Thermo Scientific) (unfractionated samples, run in technical duplicates) mass spectrometer 
using chemically etched nanospray emitters (Kelly et al. 2006). Full scan mass spectra were 
collected at 400-2000 m/z range and the top ten (linear trap) or six (orbitrap) most intense ions 
were submitted to low-resolution CID fragmentation once (35% normalized collision energy), 
before being dynamically excluded for 60 s.  
 
5. Data analysis 
 
Tandem mass spectra were searched with SEQUEST (v27.12) (Yates et al. 1995) against mouse 
IPI database (v3.52) and common contaminant sequences (all in forward and reversed 
orientations, total of 111,010 searched sequences), using the following parameters: (i) partial 
tryptic digestion, (ii) 3 Da of parent mass tolerance for linear ion trap data and 0.1 Da for 
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orbitrap data, (iii) 0.5 Da for fragment mass tolerance, and (iv) cysteine carbamidomethylation 
and methione oxidation as fixed and variable modifications, respectively. Quantification was 
done with the accurate mass and time (AMT) tag (Zimmer et al. 2006). SEQUEST results were 
filtered with Xcorr ≥ 1.9, 2.2 and 3.75 (for singly-, doubly- and triply-charged peptides, 
respectively); DCn ≥ 0.08; a minimum length of 6 amino acid residues; and Peptide Prophet 
(Keller et al. 2002) ≥ 0.5 to build a mass tag (MT) database. High resolution orbitrap runs were 
used to peak match against the MT database, using the VIPER tool (Monroe et al. 2007). To 
ensure the quality of peptide matching, all peptides matched to the MT database were filtered 
with a Statistical Tools for AMT tag Confidence (STAC), an updated version of SMART (Jaitly 
et al. 2008) score ≥ 0.7 and uniqueness probability ≥ 0.5. Additionally, peptides were required be 
present in more than half of the replicates in at least one sample, and proteins were required to 
have at least 2 peptides and at least one peptide with STAC ≥ 0.9 and MS-GF (Jaitly et al. 2008) 
≤ 1.0e-10. Peptide abundance values were rolled-up into proteins using Qrollup tool, available in 
DAnTE (Kim et al. 2008). Changes in the abundances comparing treatment and control, and 
their p-values (by ANOVA test) were calculated using DAnTE.  
 
6. Microarray Data Generation and Analysis 
 
Amino-allyl cDNA (aa-cDNA) were generated by adding 2 g of total RNA in a mixture 
containing 6 g of random hexamers (Invitrogen), 0.01 M dithiothreitol, an aminoallyl-
deoxynucleoside triphosphate mixture containing 25 mM each dATP, dCTP, dGTP, and dTTP, 
reaction buffer, and 400 units of SuperScript III reverse transcriptase (Invitrogen) at 42 °C 
overnight.  The RNA template was then hydrolyzed by adding NaOH and EDTA to final 
concentrations of 0.2 and 0.1 M, respectively, and incubated at 70 °C for 15 min.  
Unincorporated aa-dUTP was removed with a Minelute column (Qiagen).  The aa-cDNA were 
eluted with a phosphate elution buffer (4 mM KPO4, pH 8.5, in ultrapure water), dried, and 
resuspended in 0.1 M sodium carbonate buffer (pH 9.0).  To couple the aa-cDNA with 
fluorescent labels, aa-cDNA was incubated at room temperature for 1 h with normal human 
serum-Cy3 or normal human serum-Cy5 (Amersham) for the control or treatment aa-cDNA, 
respectively; and, the uncoupled dye was removed using the Qiagen Minelute column (Valencia, 
CA).   A mixture of the labeled cDNA for the treatment and the control were hybridized to 
Agilent Mouse GE 4x44K v2 Microarray (Agilent Technologies) and processed as per 
manufacture’s protocol. Slides were scanned with an Axon GenePix 4000 scanner.  Image 
analysis and intra-chip normalization were performed with Feature Extraction 9.5.3.1 (Agilent).  
Probes that were saturated, non-uniform, not found, or manually flagged were excluded from 
further analyses.  Probe Ids were mapped to Entrez Gene IDs, and average error-weighted log2 
fold-changes were calculated when more than one probe matched to single Entrez Gene ID; 
combined p-values were calculated using the weighted Z-method (Whitlock 2005).  Or 
expression values were processed with MeV (http://tm4.org/). 
 
7. Reporter Metabolite Analysis 
 
Reporter metabolite calculations were performed in a python (http://www.python.org) 
implementation of the COBRA Toolbox (http://opencobra.sourceforge.net) using SciPy’s 
(http://www.scipy.org) statistical modules. Reporter metabolite calculations (Patil and Nielsen 
2005) were performed by converting the network into a bipartate graph where the nodes were the 
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metabolites and the reactions the edges.  From the transcriptome data, for each reaction a 
combined p-value was calculated from the gene-products comprising the enzyme catalyzing the 
reaction using the weighted Z-method; in the case that a gene product was not detected a default 
p-value of 1 was assumed.  Then each reaction’s p-value was converted into a Z-score using the 
inverse normal cumulative distribution.  Next, based on metabolic network topology, a size-
independent aggregate Z-score was calculated for each metabolite from the Z-scores of the 
surrounding genes.  For transcriptome data, the metabolite Z-scores were then background 
corrected and metabolites were ranked by Z-score – the larger the Z-score the more activity 
associated with the metabolite.  Background correction was not applied for calculations 
performed with proteome data due to the typical coverage being less than 30% of the network. 
 
8. Metabolomics preparation and analysis 
 
For the metabolomics experiment, cells were seeded at a density of 3.0×106 cells in 150-mm 
dishes, grown for 2 days and stimulated for 24 hours with 100 ng/mL LPS diluted in fresh 
medium. A control culture was run in parallel by incubating for the same period of time with 
fresh medium only. Two dishes were used for each of the biological triplicates. After 
stimulation, cells were washed twice with Dulbecco’s PBS, scraped out and harvested into 15-
mL centrifuge tubes. Cell suspensions were softly centrifuged (230 ×g for 5 min) and the most as 
possible of the buffer was removed. Then, 170 µL of 150 mM ammonium bicarbonate was added 
to the cell pellet and the cell suspensions were transferred to 2.0-mL micro-centrifuge tubes for 
extraction. Subsequently, the water soluble metabolites were extracted with four volume of 
chilled (-20 °C) chloroform/methanol mixture (2:1, v:v). After the vigorously vortexing, the 
samples were centrifuged (12,000 ×g for 5 min) and upper (aqueous) layer containing water 
soluble metabolites were transferred into glass vials, followed by drying in a vacuum 
concentrator (SpeedVac; Thermo Scientific, Waltham, MA).  

Extracted metabolites were successively derivatized by two chemical reagents to enhance their 
stability and volatility for the gas chromatography-mass spectrometry (GC-MS) analysis (Kim et 
al. 2011). Each sample was initially derivatized with 30 µL of 30 mg/mL methoxyamine (cat # 
33045, Sigma-Aldrich) in pyridine at 37°C with shaking for 90 min. This step protects carbonyl 
groups as well as reduces the number of tautomeric peaks. Next, 120 µL of N-methyl-N-
(trimethylsilyl)trifluoroacetamide (MSTFA) with 1% trimethylchlorosilane (TMCS) (cat # 
69478, Sigma-Aldrich) was added to each vial, followed by incubation at 37°C with shaking for 
30 min to modify hydroxyl and amine groups into trimethylsilyated (TMS) forms. The samples 
were then allowed to cool down to room temperature and analyzed by GC-MS.  

Samples were analyzed in technical duplicates in a GC-MS system (Agilent GC 7890A coupled 
with a single quadrupole MSD 5975C; Agilent Technologies, Santa Clara, CA) connected to HP-
5MS column (30 m × 0.25 mm × 0.25 µm; Agilent Technologies). One microliter of each sample 
was injected in splitless mode and with a port temperature held at 250°C throughout analysis. 
The GC oven was initially maintained at 60°C for 1 min and then ramped to 325°C by 10°C/min 
and kept at this final temperature for 5 min (Kind et al. 2009). After format conversion to 
netCDF, generated GC-MS raw data files were processed by Metabolite Detector for peak 
deconvolution (Hiller et al. 2009). Retention indices (RI) were calculated based on the pre-
analysis of a mixture of FAMEs (C8 - C30) (Agilent Technologies) as external retention time 
standards, then their information was subsequently applied to all chromatograms for retention 
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time alignment. Deconvoluted features were identified by matching to the Fiehn Metabolomics 
library (Kind et al. 2009) which contains mass spectrum and RI information of approximately 
700 metabolites (more than a thousand spectra). The quantification was done by feature 
abundances and was subjected to a statistical analysis (t-test, p-value cut off < 0.05) to determine 
the significant metabolic changes (Polpitiya et al. 2008). 
 
9. Comparison of RAW 264.7 metabolic network to global Recon 1 
 
To validate the RAW 264.7 metabolic network and show its functional accuracy improvement 
over Recon 1, we repeated calculated flux rates and sensitivity analysis for Recon 1. We applied  
the same set of in vitro uptake exchange rates on the Recon 1 network as was applied on the 
RAW 264.7  network. We then calculated the biomass growth rate, ATP production, and NO 
production (Table S2). Growth rate with Recon 1 was ~1.5x higher than the cell-specific network 
but was within the physiological range. However, the ATP and NO production rates were  
substantially higher than the measured experimental rates. The RAW 264.7specific network 
achieved  ATP and NO production rates within 10% of the actual experimentally measured rates. 
Recon 1’s production rates for ATP and NO production, however, were > 3x the experimental 
rates. A cell-specific model is essential for accuracy as the full non-cell-specific model contains 
additional reactions that add biologically infeasible functionalities that overestimate production 
rates.  
 
To further test the difference between the generic and cell-specific networks, we re-calculated 
the sensitivity results using Recon 1. The results were quite different from the RAW cell network 
(Figure S4). Generally, the effect of metabolites was weaker on the macrophage activation 
objectives. In addition, some of the Recon 1 results did not seem biologically accurate. For 
example, arginine uptake was not activating of nitric oxide production. Glutamine had little 
effect on any of the macrophage objectives. Glucose and oxygen uptake was much less effective 
in activating the macrophage functions than previously found. Phosphate was the most 
suppressive substrate. For the products, we found no metabolite that when produced would 
activate the macrophage functions. Previously, the RAW network identified nitrogen products as 
activating (urea, glutamate, ammonia). The sensitivity results obtained from Recon 1 are quite 
different from the RAW 264.7 cell line specific network and in many cases are inaccurate. The 
cell-specific network is crucial for accurate modeling of macrophage metabolism. 
 
10. Comparison of in silico sampling predictions and omics data 
 
To validate the RAW 264.7 network’s flux sampling predictions, we compared our significantly 
changed fluxes with three high-throughput data types. Metabolite levels cannot be compared 
directly as the network only predicts flux changes. The metabolite changes were however 
consistent from a qualitative comparison (see Main Text). However, the transcriptomics and 
proteomics analyses can be compared systematically with in silico predictions. 
 
To do so, we first determined the significantly changed metabolic reactions during tryptophan 
and nucleotide uptake versus no uptake across the five objective functions through a Wilcoxon 
signed-ranked test (p < 0.05) for 10,000 randomized fluxes. To avoid bias by the objective 
function, we required that a reaction be significantly changed across at least three objectives to 
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be considered significantly changed. The predicted significantly changed reactions were 
compared to the generated transcriptomic and proteomic data. Transcripts and proteins that were 
significantly changed (p < 0.05, multiple hypotheses t-test) and had an absolute log2 fold change 
of at least 0.5 were compared to in silico predictions. 
 
There were 134 transcript comparisons and 55 protein comparisons across all time points (0h, 2h, 
4h, 24h). The accordance of the predictions and omics data was statistically significant (p < 1e-5, 
permutation test). 
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Figure S1: Comprehensive workflow for reconstructing the RAW 264.7 murine macrophage 
genome-scale metabolic reconstruction. The global human metabolic network, Recon 1, was 
converted to a draft global mouse network using homologous gene data. Combined with high-
throughput data and established algorithms, three draft macrophage reconstructions were built. 
The three drafts were analyzed, compared, and finally reconciled using existing literature data to 
build a final RAW 264.7 cell line metabolic reconstruction. 
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Figure S2: We determined the metabolic functionality of the three draft and the final murine 
macrophage reconstructions. The results are sorted by metabolic subsystem. GimmeBM 
represents the basal functionality of all the draft models while GIMMEp has the highest 
functionality. The Shlomi-NBT-08 draft reconstruction has more functionality in polysaccharide 
metabolism and miscellaneous, which consists of functions dealing with bile synthesis. 
Abbreviations: AA – amino acid metabolism, Carb – carbohydrate metabolism, Nuc – nucleotide 
metabolism, Polysac – polysaccharide metabolism, Misc – miscellaneous functions 
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Figure S3: Time course protein fold changes in RAW 264.7 cells infected with Salmonella 
typhimurium were reanalyzed from a previous study (Shi et al. 2009) . Seven proteins dealing 
with activation (Nos2, Pycr2), pentose phosphate pathway (G6pdx, Pgls, Tkt), and nucleotide 
biosynthesis (Atic, Impdh2) were detected. The protein changes follow the trends determined 
from the LPS data suggesting similar metabolic changes during infection. In addition, the time 
course data shows a clear accumulation of metabolic activation proteins and a continual decrease 
in pentose phosphate pathway and nucleotide biosynthesis pathways as infection progresses. 
Note: Nos2 protein was not detected in uninfected protein levels or 0/2/4 h. 
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Figure S4: Sensitivity results for substrates and products for the global human metabolic 
network. The results vary considerably from the ones determined for the RAW 264.7 metabolic 
network. A full size version is provided in the Supplementary Data. 
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Table S1: Topological and functional characteristics of the automated draft and final 
reconstructions 
 

Gene 
Recall 

Protein 
Recall Genes

Unique 
Metabolites 

Intracellular 
Reactions 

Active 
Reactions 

Functional 
Tests Passed

GimmeBM 0.342 0.369 446 304 424 98.6% 70 
GIMMEp 0.642 0.733 809 552 1026 92.0% 139 
iMat 0.764 0.736 938 714 1327 80.3% 127 
Reconciled 0.658 0.733 820 574 1067 90.1% 146 
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Table S2: Calculated flux rate comparison of RAW 264.7 and Recon 1 
 

 
Experimental 

RAW 
264.7 

Network 
Recon 1  

Biomass Generation (hr-1) 0.0281-0.0630 0.0408 0.0624 

ATP Generation (mmol/h/g cell DW) 0.712 0.796 2.40 

NO Generation (mmol/h/g cell DW) 0.0365 0.0399 0.132 
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