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Cytochrome P450-type hydroxylation and epoxidation in a tyrosine-liganded
hemoprotein, catalase-related allene oxide synthase
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SP-HPLC separation of the methyl esters of erythro and threo 8R-hydroxy-9,10-
epoxy-eicosatrienoates (Products 1 and 2).

lllustrating the identity of the '"H-NMR spectra (2.5 — 6 ppm) of the methyl ester of
cAOS/PhlO- and mCPBA-derived Product 1.

RP-HPLC analysis of the products formed from 8 S-HETE by cAOS/PhIO.
Identification of 8,13-diHETE, product of 8S-HETE with cAOS/PhIO.

Assignment of the 13-hydroxyl configuration in cAOS-derived 8S,13-diHETE as
13R.
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Chiral analysis of 5,6-EET, product of Arachidonic Acid with cAOS/PhIO.
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S9 Chiral analysis of 10-HETE, product of Arachidonic Acid with cAOS/PhIO.
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Supplement Fig. S1: SP-HPLC separation of the methyl esters of erythro and threo 8R-
hydroxy-9,10-epoxy-eicosatrienoates (Products 1 and 2)

Column: Thomson Advantage 5u silica (25 x 0.46 cm); Solvent: of hexane/isopropanol (100:1, v/v),
using a flow rate of 1 ml/min, with UV detection at 205 nm.
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Supplement Fig. S2

Fig. S2. lllustrating the identity of the H-NMR spectra (2.5 — 6 ppm) of the methyl ester of
cAOS/PhIO- and mCPBA-derived Product 1. The spectra were recorded in d6-benzene at 283 K.
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Supplement Fig. S3
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Fig. $S3. RP-HPLC analysis of the products products formed from 8S-HETE by cAOS/PhlIO
(A) 8S-HETE (150 uM) was reacted with cAOS in the presence of 300 uM PhIO for 3 min at
room temperature. Following extraction and formation of the methyl esters using diazomethane,
an aliquot was analyzed on a Thomson Instrument Co. Advantage C18 column (25 x 0.46 cm)
using a solvent system of MeOH/H,O/HAc (80/20/0.01 by volume) and a flow rate of 1 ml/min.
As in Fig. 2A and 5A (main text), the UV traces of 205 nm and 235 nm are at the same
sensitivity and are offset for clarity. The black dot at ~7.5 min marks a small peak identified by
GC-MS, after hydrogenation, as 8R,16-diHETE (Fig S6).

identified (NMR and GC-MS data included in SI).
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(B) Structures of the products



Supplement Fig. S4
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Fig. S4. Identification of 8,13-diHETE, product of 8S-HETE with cAOS/PhlIO

8,13-diIHETE methyl ester was hydrogenated, converted to the trimethylsilyl ether (TMS)
derivative and analyzed by GC-MS. Top: GC profile at m/z 73 (equivalent to any compounds
containing TMS). Lower panel: Electron impact mass spectrum. Diagnostic ions are listed in the
lower panel and illustrated on the structure.



Assignment of the 13-hydroxyl configuration in 85,13-diHETE, product of 8S-HETE/cAOS/PhIO

Chiral 13-HETE enantiomers were prepared by: (i) Vitamin E-controlled autoxidation of arachidonate PFB
ester, using 500% excess of vitamin E, and purification of 13-HETE PFB ester. (ii) Resolution of 13-HETE
enantiomers as the PFB esters using a Chiralpak AD column (solvent hexane/MeOH, 100:2 v/v). (iii)
Assignment of the 13R/13S configurations by mild acid (0.1% acetic acid) treatment of the individual 13-
HETE free acid enantiomers followed by purification and chiral analysis of the 11-HETE and 15-HETE
products (cf. Sl-ref 2). Then standards of 8,13-diHETE were prepared by: (iv) Reaction of 135-HETE with 8R-
LOX to produce 8R,13S-diHETE as standard. (v) Vitamin E-controlled autoxidation of 13-HETE PFB ester
followed by isolation the two diastereomers of 8,13-diHETE as standards: structures confirmed by GC-MS.
(vi) Comparison of the cAOS/PhlO/8S-HETE-derived 8S,13-diHETE with the 8R,13S-diHETE and the pair of

diastereomers (Fig. S7).
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Fig. S5: Assignment of the 13-hydroxyl
configuration in cAOS-derived 8S,13-diHETE
as 13R.

Column: Thomson Advantage 5u silica (25 x 0.46
cm), solvent, hexane/IPA (95:5 v/v), flow rate 1
ml/min, UV detection at 235 nm.
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Supplement Fig. S6
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Fig. S6. Identification of 8,16-diHETE, product of 8S-HETE with cAOS/PhlO

The peak marked with a dot in Fig S1A, was hydrogenated, converted to the trimethylsilyl ether
(TMS) derivative and analyzed by GC-MS. Top: GC profile at m/z 73 (equivalent to any
compounds containing TMS). Middle and lower panels: Electron impact mass spectrum.
Diagnostic ions are listed in the middle panel and illustrated on the structure.



Fig. S7. Chiral analysis of 5,6-EET (top), product of Arachidonic Acid with cAOS/PhIO

5,6-EET was chromatographed on a Chiralcel OJ column (25 x 0.46 cm) as described (S| ref 1) using
a solvent of hexane/isopropanol/glacial acetic acid (100:0.5:0.1, by vol.) at a flow rate of 1 ml/min,
with UV detection at 205 nm. Chiral assignment was established under these conditions using
synthetic standards (SIjref 1je s imemom e
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Fig. 8. Chiral analysis of 14,15-EET (top), product of Arachidonic Acid with cAOS/PhlO

14,15-EET was chromatographed on a Chiralcel OJ column (25 x 0.46 cm) as described (SI ref 1)
using a solvent of hexane/isopropanol/glacial acetic acid (100:0.5:0.1, by vol.) at a flow rate of 1 ml/
min, with UV detection at 205 nm. Chiral assignment was established under these conditions using

synthetic standards (Sl ref 1). e mmoucms 4R 155
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Fig. S9. Chiral analysis of 10-HETE, product of Arachidonic Acid with cAOS/PhIO

10-HETE was converted to the pentafluorobenzyl ester (PFB) and chromatographed on a Chiralpak
AD column (25 x 0.46 cm) using a solvent of hexane/methanol (100:2, v/v) at a flow rate of 1 ml/
min, with UV detection at 205 nm. The panel sizes below are adjusted to match retention times on
the x-axis.
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The enantiomers of 10RS-HETE are well resolved by chiral HPLC as the PFB ester, (Supplemental
Fig S9, above). Assignment of the enantiomers was established by rearrangement of the earlier-
eluting chiral column peak to 8S-HETE and 12R-HETE, and the later peak to 8R-HETE and 12S-
HETE, on exposure to 0.1% acetic acid. The rearrangement occurs with partial retention of the
hydroxyl oxygen (Sl ref 2) and is therefore assumed to be suprafacial, hence the assignment of the
early eluting peak as 10S-HETE. The assignment using this method was confirmed by comparison
to 10S-HETE prepared by total chemical synthesis (cf. Sl ref 2).



NMR data

Product 1, 8R-hydroxy-9R,10R-epoxy-eicosa-5Z,11Z,14Z-trienoate (methyl ester) (The
erythro 8,9 diastereomer). "H-NMR, 600 MHz, C¢Ds, 283 K, 8 5.61, dt, 1H, H12, J;1 12 = 10.9 Hz,
Ji213 = 7.7 Hz; 5.49, 1H, H6; 5.45 - 5.38, m, 2H, H14, H15; 5.36, m, 1H, H6; 5.155, dd, 1H, H11,
J11,12 =10.8 HZ, J10,11 =99 Hz s 381, dd, 1H, H10, Jg,1o =2 HZ, J1oy11 =8.9 HZ; 359, m, 1H, H8,
3.33, s, 3H, OCH3; 2.905, m, 2H, H13; 2.75, dd, 1H, H9, Jg¢ = 3.4 Hz, Jg 10 = 2 HZ; 2.24, m, 2H,
H7; 2.08, t, 2H, H2; 2.00, q, 2H, H16; 1.91, m, 2H, H4; 1.57, p, 2H, H3; 1.34 - 1.21, m, 6H, H17,
H18, H19; 0.89, t, 3H, H20.

(In spectra recorded at a temperature of 288 K compared to 283 K, the H10 epoxide signal
shifts upfield by ~0.02-0.03 ppm at the higher temperature, from 3.81 to ~3.78 ppm).

Product 2, 8R-hydroxy-9S,10S-epoxy-eicosa-5Z,11Z,14Z-trienoate (methyl ester) (The
threo 8,9 diastereomer). 'H-NMR, 600 MHz, CsDs, 285 K, 6 5.95, dt, 1H, H12, J;142 = 10.9 Hz,
Ji243 = 7.7 Hz; ~5.46 — 5.35, 3H, H6, H14, H15; 5.34, m, 1H, H5; 5.13, t, 1H, H11, J = 10 Hz;
3.72,dd, 1H, H10, Jg 10 = 2 Hz, J10,11 = 8.9 Hz; 3.405, m, 1H, H8; 3.34, s, 3H, OCH3; 2.88, m,
2H, H13; 2.745, dd, 1H, H9, Jgo = 4.0 Hz, Jg 10 = 2 Hz; 2.23, m, 2H, H7; 2.06, dt (!), 2H, H2;
1.99, q, 2H, H16; 1.91, m, 2H, H4; 1.70, d, 1H, OH (H8) J = 2 Hz; 1.55, p, 2H, H3; 1.33 — 1.20,
m, 6H, H17, H18, H19; 0.89, t, 3H, H20.

8S-HETE product: 8S,13-dihydroxy-14,15-epoxy-eicosa-5Z,9E,11Z-trienoate (methyl ester)
'H-NMR, 600 MHz, CDCls, 285 K, § 6.55, dd, 1H, H10, Jig11 = 11.3, Jo 10 = 15.1 Hz; 6.185, t, 1H,
H11,J =11.1 Hz; 5.84, dd, 1H, H9, Jgo = 5.8, Jg.10 = 15.1 Hz; 5.54, m, 1H, H5; 5.51, (dd?/m),
1H, H12; 5.42, m, 1H, H6; 4.44, t, 1H, H13, J = 8.1 Hz ; 4.23, m 1H, H8; 3.65, s, 3H, OCHS3;
3.035, m, 2H, H14, H15; 2.39-2.27, m 2H, H7,a,b; 2.32, t, 2H, H2; 2.095, q, 2H, H4; 2.065, d,
1H, OH (H13) J = 2 Hz; 1.825, d, 1H, OH (H8) J = 2 Hz; 1.70, p, 2H, H3; ~1.65-1.45, m,
H16;1.32-1.23, m, 6H, H17, H18, H19; 0.87, t, 3H, H20.

8S-HETE product: 8S,13-dihydroxy-eicosa-5Z,9E,11Z,14Z-tetraenoate (methyl ester)
'H-NMR, 600 MHz, CDCls, 285 K, § 6.62, dd, 1H, H10, J111 = 11.3, Jg 10 = 15.1 Hz; 6.04, t, 1H,
H11,J =11.1 Hz; 5.79, dd, 1H, H9, Jgg = 6.1, Jg 10 = 15.1 HZz; ~5.56 — 5.40, m, 6H, H5, H6, H12,
H13, H14, H15; 4.24, m, 1H, H8; 3.67, s, 3H, OCH3; 2.40-2.27, m 2H, H7,a,b; 2.32, t, 2H, H2;
~2.19 -2.08, m, 4H, H4, H16; 1.80, d, 1H, OH (H8) J = 4.3 Hz; 1.70, p, 2H, H3; 1.51, d, 1H, OH
(H13) J = 2.4 Hz; 1.37, m, 2H, H16; 1.32-1.23, m, 6H, H17, H18, H19; 0.87, t, 3H, H20.

8S-HETE product: 8S-hydroxy-14,15-epoxy-eicosa-5Z,9E,11Z-trienoate (methyl ester)
'H-NMR, 600 MHz, C¢Ds, 285 K, 8 6.60, dd, 1H, H10, J1011 = 11.2, Jo10 = 15.1 Hz; 6.11, t, 1H,
H11, J = 11 Hz; 5.62, dd, 1H, H9, Jgo = 5.8, Jg10 = 15.2 Hz; 5.46, dt, 1H, H12, J11 1, = 10.9 Hz,
Ji213 = 7.6 Hz; 5.41, m, 1H, H6; 5.35, m, 1H, H5; 4.00, m, 1H, H8; 3.32, s, 3H, OCH3; 2.785, dt,
1H, H14, J1314 = 6.3, J14.15 = 4. 1 Hz; 2.675, m, 1H, H15; 2.41, m, 1H, H13a; 2.28, m, 1H, H13b;
2.21, m, 1H, H7a; 2.16, m, 1H, H7b; 2.05, t, 2H, H2; 1.905, q, 2H, H4; 1.55, p, 2H, H3; 1.34, d,
1H, OH (H8), J = 4.4 Hz; ~1.44-1.22, m, 2H, H16; ~1.22-1.16, m, 6H, H17, H18, H19; 0.86, t,
3H, H20.

8S-HETE + cAOS + PhlO product (8S-hydroxy-11,12-epoxy-eicosa-5Z,9E,14Z-trienoate
(methyl ester) "H-NMR, 600 MHz, CsDs, 285 K, & 5.805, dd, 1H, H9, Jgo=5.3Hz, Jg10=15.5
Hz; 5.67, 1H, H10, Jg 10 = 15.5 Hz, J1011 = 7.2 Hz; 5.49, m, 2H, H14, H15; 5.35, m, 2H, H5, H6;
3.93, m, 1H, H8; 3.32, s, 3H, OCH3; 3.24, dd, 1H, H11, J10.11 = 7 Hz, J41,12 = 4 Hz; 2.94, dt, 1H,
H12, J11,12 = 4 Hz, J1213 = 6.3 Hz; 2.42, m, 1H, H13a; 2.195, m, 1H, H13b; ~2.18 — 2.08, m, 2H,
H7a,7b; 2.05, 7, 2H, H2; 1.97, q, 2H, H16; 1.89, q, 2H, H4; 1.55, p, 2H, H3; 1.32 — 1.20, m, 6H,
H17, H18, H19; 0.89, t, 3H, H20.
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8S-HETE + cAOS + PhIO product (8S-hydroxy-9R,10R-epoxy-eicosa-5Z,9E,14Z-trienoate
(methyl ester)

This 8,9-threo diastereomer was the only 9,10-epoxide formed by reaction of 8S-HETE with
cAOS+PhIO (Fig 5, main text). It is the enantiomer of the 8R-HETE threo product, with an
identical NMR spectrum.

MCPBA products from 8R-HETE

As the methyl esters, these eluted on RP-HPLC (MeOH/H,0, ) as:

RP1 (products a; and a,) - a mixture of 14,15-epoxy diastereomers

RP2/RP3 (products by and b,) - two 11,12-epoxy diastereomers, partly resolved by RP-HPLC
RP4/RP5 (products ¢, and c,) - two 5,6-epoxy diastereomers, partly resolved by RP-HPLC
RP6 (Products 1 and 2) - the erythro and threo 9,10-epoxy diastereomers

The pairs of diastereomers were well resolved using a Chiralpak AD column (25 x 0.46 cm) with
a solvent system of Hexane/EtOH/MeOH (100:5:5, v/v/v), flow rate 1 ml/min.

Retention volumes:

RP1  20.1 ml and 42.6 ml (8-hydroxy, 14,15-epoxy)

RP2 11.6 ml (8-hydroxy, 11,12-epoxy)

RP3 6.6 ml (8-hydroxy, 11,12-epoxy)

RP4  14.9 ml (8-hydroxy, 5,6-epoxy)

RP5 10.2 ml (8-hydroxy, 5,6-epoxy)

RP6 9.4 ml (threo), 12.8 ml (erythro) 8-hydroxy, 9,10-epoxy

Fig. 2B (main text) products a, ,: two mCPBA products, diastereomers of 8R-hydroxy-
14,15-epoxy-eicosa-5Z,9E,11Z-trienoate methyl ester (NMR data not recorded — but see 8S-
HETE product, a 14,15-epoxide)

Fig. 2B (main text) products b, ,: two mCPBA products, diastereomers of 8R-hydroxy-
11,12-epoxy-eicosa-5Z,9E,14Z-trienoate methyl ester These had indistinguishable NMR
spectra from each other and from the 11,12-epoxy product from 8S-HETE + cAOS + PhlO.

Fig. 2B (main text) product ¢,: mCPBA product, 5,6-epoxy-8R-hydroxy-eicosa-9E,11Z,14Z-
trienoate methyl ester

(the first diastereomer to elute, as the methyl ester, on RP-HPLC using MeOH/H,0 solvent)
'H-NMR, 600 MHz, C¢Ds, 6 6.765, dd, 1H, H10, Jg 10 = 15.1 Hz, J10.11 = 11.2 Hz; 6.085, t, 1H,
H11,J =11.1 Hz; 5.625, dd, 1H, H9, Jg 10 = 15.1 Hz, Jg 9 = 6.1; 5.50-5.42, m, 6H, H12, H14,
H15; 4.285, q, 1H, H8, J = 6 Hz; 3.30, s, 3H, OCH3; 2.98, t, 2H, H13, J = 6 Hz; 2.80, dt, 1H, H6,
Js6 =4.2Hz,Js7=6.2Hz; 2,52, dt, 1H, H5, J;5 = 6.2 Hz, J55 = 4.2 Hz; ~2.07-1.97, m, 4H, H2,
H16; 1.58 -1.52, m, 4H, H3, H7; 1.31, m, H4; ~1.28 — 1.20, m, 6H, H17, H18, H19; 0.89, t, 3H,
H20.

Fig. 2B (main text) product c,: mCPBA product, 5,6-epoxy-8R-hydroxy-eicosa-9E,11Z,14Z-
trienoate methyl ester

(the second diastereomer to elute, as the methyl ester, on RP-HPLC using MeOH/H,0
solvent). There are significant differences in the chemical shifts compared to the first
diastereomer, e.g. on the protons in the conjugated diene, and especially noticeable is the more
downfield position of H6.

'H-NMR, 600 MHz, C¢Ds, 285 K, 6 6.65, dd, 1H, H10, Jg 10 = 15 Hz, J1041 = 11 Hz; 6.04, t, 1H,
H11, J =10.9 Hz; 5.585, dd, 1H, H9, Jg 10 = 15.1 Hz, Jg¢ = 6.0; 5.46, m, 6H, H12, H14, H15;
4.21, m, 1H, H8; 3.30, s, 3H, OCHS; 3.02, m (ddd?), 1H, H6; 2.97, t, 2H, H13, J = 7.5 Hz; 2.61,
dt, 1H, H5, J;5 = 6.2 Hz, J55 = 4.2 Hz; ~2.09-1.99, m, 4H, H2, H16; 1.595, m, 3H, H3, H7a;
1.505, ddd, H7b; ~1.34 — 1.20, m, 8H, H4, H17, H18, H19; 0.89, t, 3H, H20.
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Fig. 2B (main text) products 1 and 2: two mCPBA products, diastereomers of 8R-

hydroxy-9,10-epoxy-eicosa-5Z,9E,14Z-trienoate methyl ester NMR data given above as
Products 1 and 2.
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