## The Basic Properties of the Electronic Structure of the Oxygen-Evolving Complex of Photosystem II are not Perturbed by Ca<sup>2+</sup> Removal

Thomas Lohmiller,<sup>‡</sup> Nicholas Cox,<sup>‡</sup> Ji-Hu Su,<sup>‡,§</sup> Johannes Messinger,<sup>∥</sup> Wolfgang Lubitz<sup>‡,1</sup>

<sup>‡</sup>Max-Planck-Institut für Bioanorganische Chemie, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany.

<sup>§</sup>Present address: Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China.

Department of Chemistry, Chemical Biological Centre (KBC), Umeå University, S-90187 Umeå, Sweden.

<sup>1</sup>To whom correspondence should be addressed: Prof. Dr. Wolfgang Lubitz, Max-Planck-Institut für Bioanorganische Chemie, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany, Tel: +49 208 306 3614. Fax: +49 208 306 3955. E-mail: wolfgang.lubitz@mpi-mail.mpg.de.



**SUPPLEMENTAL FIGURE S1.** X-band Davies ENDOR spectra of the Ca<sup>2+</sup>-depleted OEC poised in the S<sub>2</sub>' state in PS II isolated from spinach at various magnetic fields and, for comparison, of the native OEC in the S<sub>2</sub> state in the presence of 3 % MeOH at  $B_0 = 360$  mT (bottom trace), as published in Refs. (1, 2). The S<sub>2</sub>' state spectra were smoothed using a 9-point moving average. Experimental parameters (S<sub>2</sub>' state): MW frequency: 9.717 GHz; shot repetition rate: 5 µs; MW pulse length  $\pi$ : 12 ns;  $\tau$ : 200 ns; magnetic fields  $B_0$ : 320 mT, 340 mT, 356 mT, 380 mT (from the top); RF pulse length  $\pi_{RF}$ : 4 µs; temperature: 5 K; accumulations/time: 460/355 min, 166/149 min, 160/144 min, 339/305 min (from the top).



**SUPPLEMENTAL FIGURE S2.** Q-band Davies ENDOR spectra of Ca<sup>2+</sup>-depleted PS II isolated from spinach illustrating the subtraction of the contaminating Mn<sup>2+</sup> signal from the raw data obtained from the sample poised in the S<sub>2</sub>' state, which yields the pure spectrum of the Ca<sup>2+</sup>-depleted Mn<sub>4</sub>O<sub>5</sub> cluster in the S<sub>2</sub>' state. Top trace (1): Spectrum of an illuminated sample poised in the S<sub>2</sub>' state containing both the S<sub>2</sub>' state signal and contributions from residual Mn<sup>2+</sup> ions. Middle trace (2): Spectrum of a dark-adapted sample poised in the S<sub>1</sub>' state before illumination showing only the Mn<sup>2+</sup> signal. For the subtraction, both spectra (1) and (2) were normalized with respect to the signal around 370 MHz, to which only the Mn<sup>2+</sup> ion contributes. Bottom trace (1 – 2): difference of the spectra from samples in the S<sub>2</sub>' and the S<sub>1</sub>' states, the result of which is the spectrum of the OEC in the S<sub>2</sub>' state. Experimental settings: MW frequency: 34.033 GHz; shot repetition rate: 5 µs; MW pulse length  $\pi$ : 72 ns;  $\tau$ : 480 ns; magnetic field *B*<sub>0</sub>: 1208 mT; RF pulse length  $\pi_{RF}$ : 4 µs; temperature: 5 K; accumulations/time: 202/218 min (1), 358/387 min (2).



**SUPPLEMENTAL FIGURE S3.** Titration of dark-adapted Ca<sup>2+</sup>-depleted PS II samples (S<sub>1</sub>' state) with  $Mn^{2+}$ . The relative Q-band <sup>55</sup>Mn Davies ENDOR signal intensities of  $Mn^{2+}$  ions bound to the PS II protein complex (black squares) and hexaquo- $Mn^{2+}$  in solution (red circles), quantified as described in the Experimental Procedures section 2.6 (main text), are plotted against the equivalents of  $Mn^{2+}$  ions added to the samples. The concentration of the defined PS II-bound  $Mn^{2+}$  species as a function of added  $Mn^{2+}$  was reproduced by means of a sigmoid curve fitted to the determined intensities up to 1.2 equivalents of  $Mn^{2+}$  in which the zero crossing of the x-axis was shifted to -0.2 equivalents with a half-binding value of 0.47 equivalents (solid line). The increase of hexaquo- $Mn^{2+}$ , as well as additionally unspecifically bound hexaquo- $Mn^{2+}$  ions (dashed lines). The concentration of reaction centers in the samples was  $25 \pm 3 \mu M$ . For the experimental parameters of the <sup>55</sup>Mn Davies ENDOR measurements see Fig. 4A (main text).

| T. vulcanus       | 1                                               | MAASLQASTTFLQPTKVASRNTLQLRSTQNVCKAFGVESASSGGRLSLSLQSDLKELANK                | 0   |
|-------------------|-------------------------------------------------|-----------------------------------------------------------------------------|-----|
| T. elongatus      | 1                                               |                                                                             | 13  |
| Spinacea oleracea | 1                                               |                                                                             | 60  |
| T. vulcanus       | $\begin{smallmatrix}1\\14\\61\end{smallmatrix}$ | TLTYDDIVGTGLANKCPTLDDTAR                                                    | 24  |
| T. elongatus      |                                                 | CLGIFSLSAPAFAAKQTLTYDDIVGTGLANKCPTLDDTAR                                    | 53  |
| Spinacea oleracea |                                                 | CVDATKLAGLALATSALIASGANAEGGKRLTYDEIQSKTYLEVKGTGTANQCPTVEGGVD                | 120 |
| T. vulcanus       | 25                                              | GAYPIDSSQTYRIARLCLQPTTFLVKEEPKNKRQEAEFVPTKLVTRETTSLDQIQGELKV                | 84  |
| T. elongatus      | 54                                              | GAYPIDSSQTYRIARLCLQPTTFLVKEEPKNKRQEAEFVPTKLVTRETTSLDQIQGELKV                | 113 |
| Spinacea oleracea | 121                                             | SF-A-FKPGKYTAKKFCLEPTKFAVKAEGISKNSGPDFQNTKLMTRLTYTLDEIEGPFEV                | 178 |
| T. vulcanus       | 85                                              | NSDGSLTFVEEDGIDFQPVTVQMAGGERIPLLFTVKNLVASTQPNVTSITTSTDFKGEFN                | 144 |
| T. elongatus      | 114                                             | NSDGSLTFVEEDGIDFQPVTVQMAGGERIPLLFTVKNLVASTQPNVTSITTSTDFKGEFN                | 173 |
| Spinacea oleracea | 179                                             | SSDGTVKFEEKDGIDYAAVTVQLPGGERVPFLFTIKQLVASGKPESFSGDFL                        | 230 |
| T. vulcanus       | 145                                             | VPSYRTANFLDPKGRGLASGYDSAIALPQAKEEELARANVKRFSLTKGQISLNVAKV                   | 201 |
| T. elongatus      | 174                                             | VPSYRTANFLDPKGRGLASGYDSAIALPQAKEEELARANVKRFSLTKGQISLNVAKV                   | 230 |
| Spinacea oleracea | 231                                             | VPSYRGSSFLDPKGRGGSTGYDNAVALPAGGRGDEEELQKENNKNVASSKGTITL <mark>SV</mark> TSS | 290 |
| T. vulcanus       | 202                                             | DGRTGEIAGTFESEQLSDDDMGAHEPHEVKIQGVFYASIEP- 242                              |     |
| T. elongatus      | 231                                             | DGRTGEIAGTFESEQLSDDDMGAHEPHEVKIQGVFYASIEPA 272                              |     |
| Spinacea oleracea | 291                                             | KPETGEVIGVFQSLQPSDTDLGAKVPKDVKIEGVWYAQLEQQ 332                              |     |

**SUPPLEMENTAL FIGURE S4.** Amino acid sequence alignment of the PsbO proteins from the cyanobacteria *T. vulcanus* and *T. elongatus* and the higher plant spinach (*Spinacea oleracea*). Residues ligating the Ca<sup>2+</sup> ions at the sites identified in the PS II crystal structures from *T. vulcanus* and *T. elongatus* are highlighted in red and blue, respectively. The protein sequence alignment was performed using the BLAST search engine provided by UniProt (3).

**SUPPLEMENTAL TABLE S1.** Principal Values<sup>*a*</sup> and Isotropic<sup>*b*</sup> and Anisotropic<sup>*c*</sup> Values of the Effective *G* and <sup>55</sup>Mn HFI Tensors  $A_i$  (i = 1-4) for the Simulations of the X- and Q-Band EPR and ENDOR Spectra of the Ca<sup>2+</sup>-depleted PS II from Spinach in the S<sub>2</sub>' State (Fig. 2, Main Text) and for the S<sub>2</sub> States of Native Spinach PS II (2) and Native and Sr<sup>2+</sup>-substituted PS II from *T. elongatus* (4).

|           |                                |                    | G      | $A_1$ / MHz | $A_2$ / MHz | $A_3$ / MHz | $A_4$ / MHz |
|-----------|--------------------------------|--------------------|--------|-------------|-------------|-------------|-------------|
| Spinach   | $-Ca^{2+}S_{2}'$               | Х                  | 1.979  | 342         | 212         | 173         | 139         |
|           |                                | У                  | 1.986  | 328         | 199         | 205         | 164         |
|           |                                | $\perp^{a}$        | 1.983  | 335         | 206         | 189         | 152         |
|           |                                | z () a             | 1.979  | 263         | 290         | 227         | 211         |
|           |                                | iso <sup>b</sup>   | 1.981  | 311         | 234         | 202         | 171         |
|           |                                | aniso <sup>c</sup> | 0.004  | 72          | -84         | -38         | -59         |
|           | $Ca^{2+}S_2$                   | Х                  | 1.997  | 310         | 235         | 185         | 170         |
|           |                                | У                  | 1.970  | 310         | 235         | 185         | 170         |
|           |                                | $\perp^{a}$        | 1.984  | 310         | 235         | 185         | 170         |
|           |                                | z (  )             | 1.965  | 275         | 275         | 245         | 240         |
|           |                                | iso                | 1.977  | 298         | 248         | 205         | 193         |
|           |                                | aniso              | 0.019  | 35          | -40         | -60         | -70         |
| Т.        | $Ca^{2+}S_2$                   | Х                  | 1.971  | 350         | 249         | 202         | 148         |
| elongatus |                                | У                  | 1.948  | 310         | 227         | 182         | 162         |
|           |                                | $\perp^{a}$        | 1.960  | 330         | 238         | 192         | 155         |
|           |                                | z (  )             | 1.985  | 275         | 278         | 240         | 263         |
|           |                                | iso                | 1.968  | 312         | 251         | 208         | 191         |
|           |                                | aniso              | -0.025 | 55          | -40         | -48         | -108        |
|           | $\mathrm{Sr}^{2+}\mathrm{S}_2$ | Х                  | 1.995  | 343         | 244         | 200         | 156         |
|           |                                | У                  | 1.968  | 361         | 217         | 185         | 152         |
|           |                                | $\perp^{a}$        | 1.982  | 352         | 231         | 193         | 154         |
|           |                                | z ( 🛛 )            | 1.957  | 293         | 268         | 223         | 210         |
|           |                                | iso                | 1.973  | 332         | 243         | 203         | 173         |
|           |                                | aniso              | 0.025  | 59          | -37         | -30         | -56         |

<sup>*a*</sup> The equatorial and axial *G* and  $A_i$  values are defined as  $G_{\perp} = (G_x + G_y)/2$ ,  $G_{\parallel} = G_z$  and  $A_{i,\perp} = (A_{i,x} + A_{i,y})/2$ ,  $A_{i,\parallel} = A_{i,z}$ . <sup>*b*</sup> The isotropic  $G_{iso}$  and  $A_{i,iso}$  (*i* = 1-4) values are the averages of the principal values:  $G_{iso} = (G_x + G_y + G_z)/3$  and  $A_{i,iso} = (A_{i,x} + A_{i,y} + A_{i,z})/3$ . <sup>*c*</sup> The anisotropy in the *G* and  $A_i$  values is expressed as the differences  $G_{aniso} = G_{\perp} - G_{\parallel}$  and  $A_{i,aniso} = A_{\perp} - A_{\parallel}$  between the perpendicular and parallel components of the tensors. Correlation between the ground-to-first excited state energy difference  $\Delta$  and the temperature dependence of the intensity  $I_1$  of the ground spin state EPR signal. The relative intensity  $I_1$  of the ground spin state signal  $I_1$  depends on the inverse temperature weighted by the Boltzmann factor:

$$I_{1} = \frac{C}{T} \frac{(2S_{1} + 1)\exp(-E_{1}/kT)}{\sum_{i} (2S_{i} + 1)\exp(-E_{i}/kT)}$$
(S1)

where *C* is a proportionality constant,  $S_i$  represents the total spin of the coupled states of the spin manifold (S = 1/2, 3/2, .....) and  $E_i$  are the respective energies. Here, a two spin model is used to describe the energy ladder in terms of a single effective coupling constant,  $J_{eff}$  between two fragments of the Mn tetramer: monomeric Mn<sub>A4</sub> (Mn<sup>IV</sup>,  $S_{A4} = 3/2$ ), and the coupled trimer Mn<sub>B3</sub>Mn<sub>C2</sub>Mn<sub>D1</sub> (Mn<sup>III</sup>(Mn<sup>IV</sup>)<sub>2</sub>, spin ground state  $S_{B3-C2-D1} = 1$  or 2), see (5). The corresponding simplified Hamiltonian  $H = -J_{eff}S_{A4}S_{B3-C2-D1}$  gives spin state energies  $E_i = (S_{A4}(S_{A4} + 1) + S_{B3-C2-D1}(S_{B3-C2-D1} + 1) - S_i(S_i + 1))$  $J_{eff}$ , where the total spin  $S_i = (S_{A4} - S_{B3-C2-D1})...(S_{A4} + S_{B3-C2-D1}) = 1/2...5/2$ . Equation S1 can thus be used to estimate  $J_{eff}$  and  $\Delta = E_2 - E_1 = -3J_{eff}$ . Effect of the Zero-Field Splitting Interaction on the Spin States and EPR and <sup>55</sup>Mn ENDOR Signals of  $Mn^{2+}$  Complexes (see also (6)). The EPR and <sup>55</sup>Mn ENDOR signals originating from the Mn<sup>2+</sup> ions bound to Ca<sup>2+</sup>-depleted PS II differ substantially from those typically associated with mononuclear Mn<sup>2+</sup> species in that they appear significantly broadened by the large and strongly rhombic ZFS (Figs. 3 and 4A in the main text). The characteristic EPR spectrum of high-spin S = 5/2 Mn<sup>2+</sup> complexes is the six-line signal with a HFI splitting of ~9 mT. For the <sup>55</sup>Mn nucleus of nuclear spin I = 5/2, each of these lines can be assigned to one nuclear spin sublevel  $m_I$  ranging from -5/2 to +5/2. The corresponding <sup>55</sup>Mn ENDOR signal contains 3 orientation-selective doublets centered roughly around ~125, ~375 and ~625 MHz, which originate from nuclear transitions within the  $m_S = |1/2|$ , |3/2| and |5/2| electronic submanifolds, respectively.

In the absence of a ZFS interaction, a <sup>55</sup>Mn<sup>2+</sup> EPR spectrum consist of six separate lines associated with one  $m_I$  sublevel, to each of which the five  $\Delta m_S = \pm 1$  transitions contribute. The ZFS leads to an anisotropic broadening of these transitions, especially those involving manifolds of electronic spin substates  $|m_S| > 1/2$ . Additionally, the symmetry of the ZFS tensor has a considerable effect on the orientation-dependence and thus on the line width. A large rhombicity of this interaction enhances the broadening of the powder patterns. As the ZFS becomes more relevant, the transitions associated with a certain  $m_I$  are increasingly overlapping, such that it comes to a spreading of the entire spectrum. To some extent, the broadening may additionally be attributed to small site-to-site inhomogeneities of the Mn<sup>2+</sup> environment, which have an immediate effect on the spin Hamiltonian parameters and are especially found in large and dynamic biological systems like proteins. These effects add up to result in the very broad, featureless spectrum, in which the six-line hyperfine structure from  $|m_S| = 1/2$  transitions is not resolved.

The pulse ENDOR spectra are directly affected by this spread. In the absence of a ZFS, the transitions involving a particular  $m_I$  can be probed individually by selective irradiation at frequency and field of one of the six EPR lines. Therefore, six different <sup>55</sup>Mn ENDOR spectra can be measured, each of them only comprising the transitions corresponding to the selected nuclear spin  $m_I$ , associated with all six  $m_S$ 

## Electronic structure of the Ca<sup>2+</sup>-depleted OEC of Photosystem II

sublevels. In case of a ZFS-induced anisotropic spread of the  $m_S$  substate energies, the relative intensities of the ENDOR lines from the six  $m_S$  substates for a particular  $m_I$  become orientationselective. In Fig. 4 (main text), the high-frequency  $m_S = -3/2$  signal intensities relative to those of the low-frequency  $m_S = -1/2$  and  $m_S = +1/2$  signals are clearly smaller at the more central field positions in the EPR spectrum, the spectra at 1208 mT and 1224 mT, compared to the outer ones. At 1195 mT and 1260 mT, there is a stronger relative contribution from the  $m_S = -3/2$  transitions due to their larger spread by the ZFS. Furthermore, the overlapping transition energies of the different  $m_I$  manifolds result in spectra comprising the ENDOR transitions of more than one  $m_I$  value, which leads to a broadening and concomitant lowering of the structural resolution of ENDOR lines. This reduced  $m_I$  selectivity can be clearly seen in these very broad <sup>55</sup>Mn ENDOR spectra where no spectral structure of single  $m_I$ transitions is resolved. Due to the large energetic spread in the case of the high-spin  $m_S = -3/2$  sublevels, even all five corresponding  $m_I$  transitions are excited at the same time. The Electronic Structure of an Effective S = 1/2 Spin State System: Relation of Effective Tensor Properties and Non-Explicitly Treated Interaction Terms. For evaluation of the intrinsic ZFS values  $d_i$ of the Mn ions resulting from the obtained electronic exchange coupling scheme (Fig. 7 in the main text) and whether these are within the reasonable ranges for the individual Mn oxidation states, a short overview is given on how they are calculated based on the inferred coupling topology and experimental effective spin Hamiltonian parameters:

Same as for the  $Ca^{2+}$  and  $Sr^{2+}$ -containing  $S_2$  states, the coupled Mn electronic spin system of the Ca<sup>2+</sup>-depleted S<sub>2</sub>' state can be described by an effective spin Hamiltonian (see the Experimental Procedures section 2.5), which does not include any pair-wise interaction terms such as the Heisenberg-Dirac-Van Vleck operator for the electronic exchange interaction and the ZFS term. Thus, the fitted Gand HFI tensors  $A_i$  (Table 2 in the main text, supplemental Table S1) also represent effective tensors. However instead, the corresponding intrinsic (on-site) HFI tensors  $a_i$  need to be considered for comparison to values reported for other Mn systems, assignment of oxidation states and conclusions about coordination geometries of individual Mn ions. Effective and intrinsic properties of each  $Mn_i$  ion are related by a spin projection coefficient  $\rho_i$ , a measure of the contribution of Mn<sub>i</sub> to a particular spin state. The tensor components of this scaling factor are the ratio of the corresponding effective and intrinsic values, i.e.  $\rho_i = A_i / a_i$  for the HFI. The effective G tensor, as a property of the effective electron spin S of the Mn cluster, is a weighted linear sum of the intrinsic g tensors of the individual Mn ions G = $\sum \rho_i g_i$ . As they map the subspace of the effective spin state to the entire configuration space, the  $\rho_i$ tensors for oligomeric spin systems can be computed based on the spin coupling scheme in the form of pair-wise electronic exchange interaction terms between all of the four Mn ions. Therein, the ZFS interaction, not considered explicitly as a term of the spin Hamiltonian, can be taken into account such that it affects the  $\rho_i$  tesors in an orientation-dependent manner. Through the exchange coupling between the electronic spins, the intrinsic ZFS value  $d_i$  of one Mn ion influences the  $\rho_i$  tensors of the others, too, which thus can be envisaged as a transfer of anisotropy to the other Mn ions in the cluster (for more detailed information see Refs. (4, 7, 8)).

## REFERENCES

- 1. Kulik, L., Epel, B., Messinger, J., and Lubitz, W. (2005) Photosynth. Res. 84, 347-353
- 2. Kulik, L. V., Epel, B., Lubitz, W., and Messinger, J. (2007) J. Am. Chem. Soc. 129, 13421-13435
- 3. The UniProt Consortium (2011) Nucleic Acids Res. 40, D71–D75
- Cox, N., Rapatskiy, L., Su, J.-H., Pantazis, D. A., Sugiura, M., Kulik, L., Dorlet, P., Rutherford, A. W., Neese, F., Boussac, A., Lubitz, W., and Messinger, J. (2011) J. Am. Chem. Soc. 133, 3635–3648
- Su, J.-H., Cox, N., Ames, W., Pantazis, D. A., Rapatskiy, L., Lohmiller, T., Kulik, L. V., Dorlet, P., Rutherford, A. W., Neese, F., Boussac, A., Lubitz, W., and Messinger, J. (2011) *Biochim. Biophys. Acta, Bioenerg.* 1807, 829–840
- 6. Sturgeon, B. E., Ball, J. A., Randall, D. W., and Britt, R. D. (1994) J. Phys. Chem. 98, 12871-12883
- Peloquin, J. M., Campbell, K. A., Randall, D. W., Evanchik, M. A., Pecoraro, V. L., Armstrong, W. H., and Britt, R. D. (2000) *J. Am. Chem. Soc.* **122**, 10926–10942
- Schäfer, K.-O., Bittl, R., Zweygart, W., Lendzian, F., Haselhorst, G., Weyhermüller, T., Wieghardt, K., and Lubitz, W. (1998) *J. Am. Chem. Soc.* 120, 13104–13120