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ABSTRACT
Gene conversion is a recombinatorial mechanism which transfers
genetic information from a donor into a recipient gene. A case
of gene conversion between immunoglobulin VH region genes was
analysed and palindromic sequences were found to be located near
to the left recombinatorial breakpoint, which also is flanked by
a direct repeat sequence. We performed a computer search for
palindromes and direct repeats in the published sequences of
eucaryotic genes which had been involved in gene conversion. In
these sequences, the palindrome with the best or second best
quality is located near to a breakpoint of recombination. A
correlation of recombination breakpoints with direct repeats was
not observed. This suggests that gene conversion is promoted by
palindromic sequences.

INTRODUCTION

Immunoglobulin V-region genes are organized as multigene fami-
lies (VH,- VK-, and VX). V-region gene diversity can be gene-

rated somatically and in the germ-line by point mutations (1);
another possibility may be recombination (2, 3). The recombi-

natorial mechanism of gene conversion has been suggested to play
an important role in the diversification of multigene families

(4, 5).
The recombinant VDJ-region of the IgD,Xl antibody secreted by

hybridoma B1-8.V1 (6) presumably has been generated by mitotic
gene conversion (7, 8) between VH-genes V186.2 and V102.1 (9) of
the C57BL/6 mouse. A segment carrying V102.1 sequence replaces
the corresponding segment of gene V186.2. In this study we
accurately determined one breakpoint of recombination in the

recipient gene V186.2. It falls into a region where the latter

gene exhibits palindromic sequences. We suggest that these se-
quences are capable of forming stem-loops that may have promoted
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recombination. This suggestion is supported by finding palin-
dromic sequences at recombination breakpoints in 8 eucaryotic
genes which had undergone conversion.

MATERIALS AND METHODS

Construction and screening of a X-phage library

Construction of a X-phage library, library screening, restric-

tion site analysis, Southern hybridization and construction of

M13 subclones were performed employing standard methods (10).

VH-gene V102.1 (9) has been re-isolated as X phage VAR102 from a

partial MboI library of the genome of hybridoma B1-8.V1 in

vector EMBL4. As a probe we utilized the 71 bp HaeIII fragment

(pos. 1943-2014 in Fig. 1) of gene V102.1 cloned in a M13 phage.

Lambda phage Vl is described in Krawinkel et al. (8).
DNA nucleotide sequencing

The sequence of the 5' flanking region of VDJ-region Vl in phage
XV1 was obtained from HinDII and Sau3A subclones in M13 vectors

(pos. 200-1341, 1602-1629 in Fig. 1). The sequence of Vl from

pos. 1630-2106 is taken from Krawinkel et al. (8). VH-gene
V102.1 has been entirely resequenced from HinfI and PstI-BglII
subclones of XVAR102 in M13 vectors. Nucleotide sequence analy-

sis was performed employing the dideoxy chain termination proce-

dure (11). Sequence V186.2 between pos. 1-1629 was determined by

applying the chemical degradation procedure (12) to the left

5 kb EcoRI fragment of XV186 (9). The V186.2 sequence between

pos. 1630-2106 is taken from Bothwell et al. (9).

Computing

Palindromic sequences have been detected utilizing the "stem-

loop" programme provided by the University of Wisconsin Genetics
Computer group (13). The rules of Tinoco et al. (14) and Aboul-

ela et al. (15) are taken into account to estimate the quality

of stem-loop structures: we searched for stem-loops exhibiting a

maximum of Watson-Crick base-pairings and a minimum of mis-

matches in the stem and a loop size smaller than 30 bases.

Bigger loops would destabilize a stem by at least +6 kcal/mole

(14). The bonds in a stemloop are scored: 3 for GC pairs, 2 for

AT pairs, 1 for GT pairs, 0 for AC pairs and -3 for purine-

purine and pyrimidine-pyrimidine pairs. Our computer search for
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Fig. 1
Nucleotide sequence comparison of VH-genes V186.2, Vi and
V102.1. Sequences V186.2 and Vi between positions 1630-2106 are

taken from Bothwell et al. (8, 9). All other sequences have been
newly determined. Codon numbers are written on top of the re-

spective codons. The V102.1 sequence is printed negatively.

palindromes was performed with the minimal stem length set to

11 basepairs in H2Kb, IABb and V186.2, Ha2m2, Hal, IE8b, Q10, 10

bp in SUP 3, 9, 12 and 9 bp in CYC1.11 and CYC7. The minimal

number of bonds/stem was set to 22, or 18 in CYC1.11 and CYC7 or
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23 in IA8b, or 26 in HaA2m2 and Ha1. The maximal loop size was

set to 20 bases, or 28 bases in the case of SUP9. Direct repeat

sequences were detected utilizing the "seqtree" programme (16).
The longest direct repeat expected to occur by chance in a

sequence was predicted as described in (17).

RESULTS

Structure of VH-segment Vl

Vl represents the VH-segment of the VDJ-region expressed by
hybridoma B1-8.V1. A mechanism analogous to gene conversion

appears to have generated Vi in the C57BL/6 derived Igh-locus of

B1-8.V1 (8).
The potential donor gene V102.1 was isolated from the genome of

hybridoma B1-8.V1 and does not show structural alterations when

compared to the corresponding germ-line sequence (9).
By eliminating three sequence errors from the published sequence

of V102.1 (pos. 1677, 1815 and 1842 in Fig. 1) the size of the

V102.1-derived sequence tract in Vl can be determined more

accurately than before. It is 165-177 bp long. The tract starts

at codon 11 and ends between codons 66 and 70. The left recombi-

nation breakpoint can be assigned either to the first or to the
second base of codon 11. Vl contains only one segment of se-

quence derived from the donor V102.1. The 5' flanking region of

Vl is identical to the wild-type sequence of gene V186.2 in a

region covering 1141 bp. Although the nucleotide sequence of the
corresponding region of V102.1 has not been determined further

upstream than to pos. 1582 one knows from polymorphism of re-

striction sites that the 5' flank of V102.1 is different from

the one of V186.2 (18) and thus also different from the one of

V1.
Inverted repeat sequences at breakpoints of recombination

VH-gene V186.2 and eight genes that are reported to have acted
as recipient genes in gene conversion were searched for palin-
dromic sequences. The result of the search in genes V186.2, the
murine histocompatibility class I gene H2Kb (19, 20), the murine
histocompatibility class II gene IABb (21-24), the human Vk-gene
HK137 (25), the yeast cytochrome C gene CYC1.11 (26), the human
Ca2 immunoglobulin gene Ha2m2 (27), and the yeast suppressor
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Fig. 2
a) The two respective best palindromes are shown as black boxes
under genes that served as recipients in gene conversion and all
palindromes in V186.2 are shown. The second best palindrome in
V186.2 is located at pos. 1846-1861, 1879-1895, and the second
longest direct repeat maps at pos. 1830-1840, 1850-1860 (see
Fig.1). The quality of a palindrome (bond units) is displayed.
Direct repeat sequences longer than the theoretically expected
longest direct repeat (17) are shown as arrows above recipient
genes.
b) The two respective best palindromes are shown as black boxes
under genes that served as donors in gene conversion.
Recombination breakpoints are localized in the hatched regions.
The minimum size of a recipient gene segment converted by donor
gene sequence and the minimum size of a donor gene sequence
transferred into the recipient are depicted as open boxes.

tRNA genes SUP 3, 9, 12 (28) is shown in Fig. 2 and Table 1.
It is evident in Fig. 2 that the palindrome with the best quali-

ty in terms of bond units in 6 of 9 genes is found near to a

breakpoint of recombination. It should be noted that the quality

of palindromes, either shown in bond units or as the free energy

is a relative measure of the capacity of palindromic sequences

to form stem-loop structures. In the case of HK137 the palin-
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drome near to the right recombination breakpoint has 22 bonds as

compared to the 23 bonds of the palindrome located further

upstream. However, the latter is less stable when free energies

are considered (-10.4 vs. -13.4 kcal/mole). The best palindrome

in V186.2 has 42 bond units and is represented by a stretch of

21 AT-pairs in the 5' flanking region. Apart from this perfect

palindrome in a simple repetitive sequence a cluster of imper-

fect palindromic sequences including the second best palindrome

is found at the left breakpoint of recombination. Correlation of

a point of recombination with the second best palindrome (20

bond units) also is found in IABb. This imperfect palindrome

may form a loop-less stem which certainly is unstable (14). Such

a stem has been shown to occur in the perfect palindrome of an

(AT)n-sequence (29). The best palindrome in IABb is located 144

bp further upstream (Fig. 2a) and has 22 bond' units.

In all gene conversions presented here the left and the right

point of recombination cannot be mapped precisely because of

extensive sequence homology between donor and recipient genes. A

point of recombination in the recipient gene therefore is lo-

cated between positions that define the minimum size and t-he

maximum size of the gene segment which is replaced by the cor-

responding segment of the donor gene. The minimum and the maxi-

mum distances of the respective best, or in 2 cases second-best

palindrome, to the next point of recombination in 9 genes which

served as recipients in gene conversion range between 0 and

99 bp.

The probability P of coincidence between a point of recom-

bination and the best palindrome (second best in V186.2 and

IABb) in 9 recipient genes is calculated (Table 2) utilizing the

parameters A, B, C, D and E as defined in Table 1.

Palindromes at points of recombination are also found in genes

that served as donors in gene conversion. Donor genes V102.1,

HK102 (25) and Hal (27) carry palindromes which exactly corre-

spond to the ones in the respective recipients V186.2, HK137 and

Ha A2m2, simply because of extensive sequence homology between

donors and recipients. Recipient genes SUP12 and SUP3 also serve

as donors in gene conversion (28). The donor to CYC1.11, namely

CYC7 (26), does not exhibit palindromes under the conditions of
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stringency chosen for the search in CYC1.11. The donor to H2Kb,
Q1o (20), exhibits the best palindrome at a position 10-27 bp

downstream of the right point of recombination. In IEBb which

serves as a donor to IABb (23,24) the best palindrome coincides

with the region to which the left point of recombination can be

assigned (Tab. lb, Fig. 2b). The probability of coincidence be-

tween the best palindrome and a point of recombination in donor

genes is shown in Tab. 2b.

Direct repeats at points of recombination

We also searched for direct repeats in the recipient genes

mentioned above. In V186.2 the longest direct repeat is repre-

sented by 21 AT-pairs which are located 781-783 bp upstream of

the left point of recombination. The second longest direct

repeat in V186.2 flanks this breakpoint and coincides with a

cluster of palindromes (Fig.2a). HK137 and SUP12 exhibit direct

repeats mapping at least 17bp away from the next point of recom-

bination. No significant direct repeats are found in genes H2Kb,
IABb, CYC1.11, SUP3,9, and the longest direct repeat in HaA2m2

is 234-333 bp away from the right point of recombination. This

led us to the conclusion that direct repeat sequences are unre-

lated to points of recombination in recipient genes.

Table 2

a) Gene P b) Gene P

H2Kb 0.489 Q10 0.533
IA83b 0.243 IEBb 0.209
HK137 0.126 HK102 0.126
V186.2 0.054 V102.1 0.142
HcaA2m2 0.388 Hal 0.388
CYC1.11 0.710
SUP3 1
SUP9 1
SUP12 0.679

Probability of coincidence between a point of recombination and
the best palindrome (second best in V186.2 and IABb) in a)
recipient genes and b) donor genes in gene conversion. P is the
probability that a palindrome (length = A) in a string of
sequence (length = B) is not further away from one of the two
points of recombination than D basepairs: P=(A+C+4D)/B. In genes
where the length of the recombinant region (=E) is shorter than
2xD (see table 1) P is calculated from (A+C+2D+E)/B. The sum of
the lengths of the respective best and second best stemloop is
taken as parameter A to calculate P for genes V186.2 and IABb in
which the second best stemloop is located near to a point of
recombination.
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DISCUSSION

A mechanism analogous to gene conversion It4) appears to have

transferred genetic information from VH-gene V102.1 into VH-gene
V186.2 in the genome of the murine hybrieoma B1-8.V1 (7,8). The

sequence of donor V102.1 is identical to the corresponding germ-

line sequence (9) thus supporting the notion that the donor gene

remains structurally unaltered in the process of gene conver-

sion.

The left recombinatorial breakpoint in V186.2 and V102.1 is

flanked by the direct repeat of the motif AGCCTGGGGCT and, in

addition, is located maximally 3 bp away from a palindrome

potentially capable of stem-loop formation. In order to investi-

gate whether this observatiori could be generalized we performed

a computer search for palindromes and direct repeats in

published sequences of genes that had been involved in eucaryo-

tic gene conversion.

Correlation is found be4tween a breakpoint of recombination and

the palindrome which nmay form the best or second best stem-loop
in the respective scanned sequence (Fig. 2, Tab. 1). One has to

concede, however, that this correlation may be coincidental in

genes CYC1.11, H2Kb, Q10 and SUP3, 9, 12 (Tab. 2). No corre-

Table 3

Gene Expected longest Length of direct Minimal/Maximal
direct repeat repeats longer distance of
(ELDR) than ELDR longest direct re-

peat to next point
of recombination

(bp) (bp) (bp)

H2Kb 7.2 not found
IA5b 8.7 not found -

HK137 6.9 9, 8 17/121
V186.2 10 40, 11 3/8
HaA2m2 10.1 12 234/305
CYC1.11 6.6 not found -

SUP3 6.7 not found
SUP9 6.7 not found -

SUP12 6.7 8 17/132

Direct repeat sequences in genes that served as recipients in
gene conversion. The longest direct repeat sequence expected to
occur in a sequence by chance (ELDR) is predicted according to
(17). Direct repeats are taken into account provided they are
longer than the expected longest direct repeat (ELDR). The
distance of the longest direct repeat (second longest in V186.2)
to the next point of recombination is shown.
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lation is found in the donor gene to CYC1.11, CYC7; in IA8b the

left point of reconabination is correlated with a palindrome

which may form a weak loop-less stem.

The search for direct repeats in eight recipient genes did not

show a correlation of bre4kpoints with repeated sequence motives

longer than the statistically expected longest direct repeat

(Tab. 3). Because of this we regarded a search for direct re-

peats in donor genes as pointless. As for V186.2, one cannot

exclude that direct repeats played a role in the recombination

process.

In accordance with the hypothesis put forward by Wagner and

Radman (30) and Baltimore and Loh (31) we suggest that palin-

dromic DNA sequences promote gene conversion in that they serve

as a recognition site for a recombination enzyme. Such an enzyme

may be a twofold symmetric protein molecule which recognizes a

twofold symmetric sequence in duplex DNA, or it may be an enzyme

which cuts at the basis of a stem-loop in single stranded DNA.

It has been shown that enzymes involved in bacterial recombina-
tion recognize stem-loops (32) and it is likely that functional-

ly related enzymes operate in eucaryotic cells.

As inverted repeats may lead to stem-loops only in single-

stranded DNA gene conversion could be promoted by such struc-

tures during DNA-replication. Champoux et al. (33) suggest that

eucaryotic recombination involves type I topoisomerases which

cut at palindromic sequences in single-stranded regions of un-

wound duplex DNA. Five of the nine palindromes correlated with

recombination breakpoints (Table la) carry sequences (CTT, GTT)
which are cleaved by eucaryotic topoisomerase I (34, 35). In

V186.2, the left point of recombination precisely matches a

potential topoisomerase I cleavage site.
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Note: Cumano and Rajewsky in our laboratory found another gene
conversion between immunoglobulin VH-region genes. A breakpoint
of recombination is correlated with a palindrome in the donor
gene (manuscript in preparation).
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