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Th ding £ agg*;lyﬁ i RNA pol 3j

e gene coding for merase major
43, ;pgg. was cloged together wi ts neighbggigg genes in a 7
kb EcoRI fragment. The complete nucleotide sequence of a 5 kb
fragment including the entire rpoD gene revealed the presence of
two other genes preceding rpoD in the order P23-dnaE-rpoD. The
dnak codes for DNA primase while the function of P23 remains
unknown. The three genes reside in an operon that is similar in
organization to the E.coli RNA polymerase major ¢’ operon, which
is composed of genes encoding small ribosome protein S21 (rpsgl),
DNA primase (dnaG), and RNA polymerase o’° (rpoD). There is a
relatively high degree of base and amino acid homology between
the DNA primase and o genes. The most significant differences
between the two operons are observed in the molecular size of the
first genes (P23 and rpsU), the complete lack of amino acid
homology between P23 and S21, the molecular weights of the two
IpoD genes, the size of the intercistronic region between the
first two genes, and the regulatory elements of the operon.

JINTRODUCTION
The existence of multiple RNA polymerase o factors in
B, subtjlis has been well documented (1,2), but little is known

about their genetic properties, the regulation of their
synthesis, and the factors that govern their interactions with
the RNA polymerase core. An analysis of their molecular
organization and the parameters which regulate their genetic
expression should provide a initial basis for determining their
roles in the physiology of this Gram positive sporulating
bacterium.

Our laboratory has been particularly interested in the study
of the o*3 gene (rpoD), whose product is known to play a major
role during vegetative growth, and the early stationary and
sporulation phases (3). We have been able to clone (4),
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genetically map (5), and sequence (6) the o"3 gene (rpoDR), and
show that its derived amino acid sequence had a very high degree

of homology with that of the E.coli major o¢7° (7). By genetic
mapping (5) and DNA sequencing (8), we also showed that

immediately upstream of the rpoD gene was located the dnaE gene,
which encodes the B. subtjljis DNA primase, whose product is very
homologous to the E.coli dnaG DNA primase (9,10). No promoter
region was observed in the intercistronic region between rpoD and
dnagE, nor in the region immediately upstream of dnaE (6,8).

Recently, we have determined the nucleotide sequence of the
region upstream of dnaE including the operon regulatory region,
which provided support for our previous suggestion (6,8) that
dnaE and rpoD were coordinately regulated with one or more
unknown genes in an operon. The DNA sequence analysis of
the region upstream of dnaE revealed an open reading frame
capable of coding for a protein of molecular weight 22,540. The
function of this protein is unknown, and hence the designation
P23 is being used for this gene until a physiological role can be
assigned to it.

In this paper we will discuss the similarities and
differences of the structure and organization of the major sigma
operons of B, gubtilis and E, coli, the transcriptional and
translational regulatory features of the operon, and the codon
usage frequency encountered in the operon.

MATERIALS AND METHODS
Strains, Phages and Plasmids

E. coli JM101 was used as host for the sequencing phage
vectors M13mp8, M13mp9, M13mplO, and M1l3mpll (11,12), and the
plasmid pCPS1 (5). E, coli BNN45 (13) was used to prepare the
phage lysate of 2AgtWES-c82 (4). Plasmid pSB was provided by
Sui-Lam Wong (unpublished data).
DNA Manipulations

Standard procedures of Maniatis et al. (14) were followed
exactly as described.

DNA Sequencing
DNA sequencing was conducted by the dideoxy chain
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termination method of Sanger et al. (15) using the sequencing kit
purchased from Amersham Corporation.
Computer Analysis

Routine analysis of DNA or protein sequences were carried
out using either the Delaney (16) or the Pustell (17) program,
while the homology search against the NBRF Data Bank was made
using the Microgenie Sequence Analysis Program developed by
Queen and Korn (18).

RESULTS
Nucleotide sequence of the Entire Operon

The nucleotide sequences and the sequencing strategies of
dnaE and rpoD genes have been reported previously (6,8). The
sequencing strategy for the upstream 1.5 kb fragment is shown in
Fig. 1 (bottom) along with the physical map of the o*3 operon
(upper). As indicated, the nucleotide sequence has been
determined for both strands of virtually the entire region except
for the 100 bp at the extreme 5' end. The sequence was
determined across the junctions of all the restriction sites used
for subcloning during sequencing, as well as for the EcoRI site
between the dnakE and rpoD genes (not shown here). In our
previous reports, the sequences for these two genes were
determined separately (6,8). Although unlikely, the possibility
existed that a small EcoRI fragment may have been left out during
the subcloning of the EcoRI fragments into plasmids from the
original phage AgtWES-0c82 (4,5). Therefore we sequenced the 0.9
kb HindIII fragment containing the EcoRI junction region, which
was subcloned into M13mplO directly from thWES-c82, and the
possibility mentioned above has been experimentally excluded.
Now, the entire EcoRI-SphI fragment has been sequenced, including
all the junctions of restriction sites used for sequencing. The
nucleotide sequence of the entire operon and its flanking
regions, and the deduced amino acid sequence of each gene are
given in Fig. 2 with the first base of the 5' end EcoRI site
labeled as number 1.
EFeatures of the First Gene of the Operon

When the sequence of the region upstream of dnak was
analyzed by computer, only one large open reading frame was
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Figure 1. Sequencing strategy for the first gene and regulatory region of
the o"2 operon.

The upper part represents the physical location of the genes in the operon.

The lower part indicates the restriction sites used for subcloning and se-

quencing., The bar indicates the location of the cryptic P23 protein.

Abbreviations: H, Hpall; S, Sau3A.

discovered. But unlike the case for the other two genes in the
operon, we could not identify any strong ribosomal binding site
by sequence analysis within the open reading frame. We found
instead several weak ones preceeding the potential initiation
codons ATG (855), TTG (930), ATG (951), and GTG (1,200), which
were able to code for proteins of molecular weights 22,540,
19,734, 18,934 and 9,312, respectively. However, our previous
maxicell data showed that a protein of molecular weight around
23,000 was encoded within the upstream region of dnakE (4,5),
which corresponded very well with the largest open reading frame
identified here by sequencing, i.e., the open reading frame
starting from the initiation codon ATG at nt 855.

Although the ribosomal binding site was very weak as
predicted from its calculated free energy of binding (AG = -9.2
kcal/mol), our assignment was further strengthened by our recent
protein fusion studies. When the N-terminal two thirds of the
P23 was fused to the E, ¢0li B-galactosidase in frame, a
functional hybrid protein was expressed in both E, coli and B,
subtilis with the expected size as determined by Western blot
analysis using anti-B-galactosidase antibody (data not shown).
Functional P23-8-galactosidase (P23-gal) fusion protein was
expressed even when only the first 8 amino acid residues of P23
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Table 1. Amino Acid Composition (mol%) Analysis

Group P23 dnaE rpoD Ave. B.s.
Proteins*
Small aliphatic (A+G) 10.2 13.3 11.2 15.0
Hydroxyl (S+T) 12,2 11.0 9.6 13.4
Acidic (D+E) 14.3 14.3 21,1 14.2
Acidic + acid amide (D+E+N+Q) 22.4 22.3 28.0 23.1
Basic (K+R+H) 14.3 16.7 16.0 14.8
Hydrophobic (L+I+V+M) 22.9 22.8 24.9 26.3
Aromatic (F+Y+W) 8.7 9.5 6.0 7.7
Charged (D+E+K+R+H) 28.6 31.0 37.1 29.0
* The amino acid composition of average B. subtilis proteins

is calculated from 35 sequenced genes published up to 1985.

were fused to the 8th amino acid residue of B-galactosidase,
which led us to the conclusion that ATG (855) was functionally
active in vivo. Hence, we designated the first gene of the
operon as P23 from these data and for the reason that its
physiological function is still unknown. _

The deduced amino acid sequence of P23 was examined for
homology against the NBRF Protein Data Bank using the Microgenie
Program (18), but no significant homology was found to any of the
known proteins in the bank, indicating to us that P23 was not
homologous with E. coli S21, the first gene in the o’°
operon (also their size difference is significant), and that P23
might be unique to B, gubtilis , or that its counterpart in E.
coli has not been characterized as yet. The latter case is a
possibility, since a reasonable degree of homology has been found
between many B. subtjlis and E. ¢olj proteins.

The deduced amino acid composition of P23 is shown in Table
1, together with those of DNA primase, ¢"® and an average of
B, subtilis proteins for comparison. One difference noted from
0*?, which is a highly acidic protein typical of most
transcription factors (7,19,20), is that P23 is more like the
average composition of B, gubtilis proteins. Thus it is
difficult to categorize this protein based on its amino acid
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composition. We are currently raising antibody against P23 using
a P23-gal fusion protein as antigen, hoping that this will
provide us a tool to determine the location and possibly the
function of P23 in B. subtilis.
Requlatory Features

Previously, we reported that there was no promoter activity
detected within the intercistronic regions of the operon except
for a weak heat shock promoter activity located at the C-termianl
end of the dnaE gene (8). So we concluded that a promoter(s)
should exist in front of P23 if the operon was composed of three
genes as in the case of E.coli ¢’° operon (10). By sequence
analysis we did find at least two potential promoters with
significant homology to the consensus sequence of B. gubtilis
o*? promoters (1,2), which were then confirmed to function ipn
" yivo by fusing the 211 bp Sau3A fragment (609-821) to the
subtilisin gene (aprA) in a promoter-probe plasmid pSB (Wong and
Doi, unpublished data). These sequences are underlined in Fig.
2, and designated as Pl and P2. To our surprise, one additional
promoter activity was detected when the 316 bp Sau3A fragment
(829-1136) downstream of Pl and P2 was cloned in pSB. This

promoter (P3) was temporally regulated in that it was not expressed
until the culture reached the sporulation phase, while Pl and P2

were expressed efficiently mainly during growth. More detailed
mapping and functional characterization of these promoters are in
progress, and will be published elsewhere.

Earlier sequence analysis (6) allowed us to identify a sequence
typical of rho independent terminator (21) immediately following the
TAA stop codon of rpoD gene (underlined in Fig. 2). Recently,
we confirmed its termination activity jn vivo by subcloning the
PvuII-AhaIII fragment (4394-4641) into a B, subtilis
terminator-probe plasmid pST19 constructed in our laboratory
(Wang and Doi, unpublished data). We were able to show that
introduction of this 247 bp fragment reduced the activity of the
indicator enzyme in the terminator probe (subtilisin, in this
case) by more than 90% compared to the control (vector alone),
indicating that this was a relatively strong terminator (data not
shown) .

Thus we have determined the presence of three genes in the
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Table 2. Codon Usage of B.subtilis Sigma-43 Operon*

AA Codon P23 dnaE rpoD B.s. E.c. AA Codon P23 dnaE rpoD B.s. E.c.

Phe UUU 1.00 .73 .45 .67 .37 Tyr UAU .86 .74 .80 .62 .40
Phe UUC .00 .27 +55 .33 .63 Tyr UAC .14 .26 .20 .38 .60
Leu UUA .24 .20 .31 .23 .07 OCH UAA 1.00 1.00 1.00 .57 .75
Leu UUG .19 .12 .15 .13 .09 AMB UAG .00 .00 .00 .06 .08

Leu CUU .29 .29 .28 .24 .07 His CAU .60 .78 .50 .68 .54
Leu CUC .00 .10 .00 .11 .07 His CAC .40 .22 .50 .32 .46
Leu CUA .05 .03 .08 .05 .02 Gln CAA .71 .53 .65 +56 .24
Leu CUG .24 .26 .18 .23 .68 Gln CAG .29 .47 .35 .44 .76

Ile AUU .62 .39 .54 .50 .36 Asn AAU .78 .58 .67 .53 <26
Ile AUC .23 .35 .40 .40 .61 Asn AAC .22 .42 .33 47 .74
Ile AUA .15 .26 .00 .10 .03 Lys AAA .73 .73 .88 .75 .76
Met AUG 1.00 1.00 1.00 1.00 1.00 Lys AAG .27 .27 .12 .25 .24

val GUU .39 .29 .43 .20 .36 Asp GAU .83 .64 .58 .63 .46
val GUC .23 .31 .14 .24 <15 Asp GAC .17 .36 .42 .37 .54
Val GuA .15 .26 .33 .23 .22 Glu GAA .81 .63 .77 .69 .73
vVal GUG .23 .14 .10 .23 .27 Glu GAG .19 .37 .23 .31 .27

Ser UCU .20 .30 .31 .25 .23 Cys UGU .33 .20 .00 .50 .43
Ser UCC .27 .09 .06 .12 .27 Cys UGC .67 .80 .00 .50 .57
Ser uCA .20 .13 .13 .14 .07 OPL UGA .00 .00 .00 .37 .17
Ser UCG .20 .15 .06 .11 .11 Trp UGG 1.00 1.00 1.00 1.00 1.00

Pro CCU .40 .53 .50 .33 .12 Arg CGU .15 .08 .33 .24 .56
Pro CCC .20 .07 .08 .09 .07 Arg CGC .00 .11 .17 .18 .36
Pro CCA .00 .20 .17 .18 .16 Arg CGA .23 .14 .07 .09 .03
Pro CCG .40 .20 .25 .40 «65 Arg CGG .00 .17 .17 .11 .03

Thr ACU .11 .10 .10 .17 .25 Ser AGU .07 .07 .31 .10 .06
Thr ACC .00 .14 .10 .14 .50 Ser AGC .07 .26 .13 .23 .26
Thr ACA .56 .29 .30 .42 .07 Arg AGA .54 .28 .27 .28 .01
Thr ACG .33 .47 .50 .27 .18 ARG AGG .08 .22 .00 .10 .01

Ala GCU .50 .37 .26 .26 «26 Gly GGU .10 .14 .53 .21 .48
Ala GCC .20 .26 .35 .19 .21 Gly GGC .30 .35 .32 .33 .39
Ala GCA .30 .22 .17 .31 .22 Gly GGA .40 .37 .16 .32 .05
Ala GCG .00 .15 .22 .24 .31 Gly GGG .20 .14 .00 .14 .08

* 1) B.s. codon usage frequency of average B. gubtilis proteins,
compiled from 10,919 codons of 35 sequenced genes.
2) E.c. codon usage frequency of average E. coli proteins, from
reference 24.
3) The number tabulated is the fraction usage of each codon compared
with total for identical amino acid.

RNA polymerase major ¢"® operon in the order P23, dnaE and rpoD
and have physically and functionally located the promoter and
terminator regions for the operon.
Codon Usage

It has been well established in E. ¢0li that there is a
correlation between expression level of a gene and its codon
usage pattern. The more highly expressed genes show a very non-
random pattern of codon usage, utilizing a restricted set of
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codons which are recognized by major species of isoacceptor
tRNAs, while genes which are expressed at very low levels show an
almost random pattern of codon usage (22,23). The analysis of
this kind of correlation in B, subtilis has been limited due to
the small number of sequenced genes, and the lack of knowledge
concerning the expression levels of these genes in vivo.
Recently, the rapid advance of cloning and sequencing of B.
subtilis genes have allowed us to compile a codon usage table for
average B, subtilis proteins and compare this with the codon
usage of each gene in the o"3 operon, and also with that of
average E. ¢o0li proteins (24) (see Table 2). Comparison of the
codon usages between B. subtjlis and E. coli led us to the
general conclusion that B, subtjilis tends to more evenly or
randomly distribute the codons for its amino acids than E, ¢coli.
Nevertheless, the rarely used codons in E, ¢coli, CUA (Leu), AUA
(Ile), CCC (Pro), AGG (Arg) and GGG (Gly), were also used least
in B. subtilis, although the bias is not as dramatic as that in
E. coli. When the usage frequencies of codons AUA, AGG and GGG
in the three genes of the operon were carefully examined,
striking differences were found. 1In rpoD, a relatively highly
expressed gene in B, gubtilis [2,000-10,000 molecules/cell during
growth (6)] just as its counterpart in E. colj (10), these codons
were not used at all, while in P23 and dpaE they were used quite
frequently. Especially in dnaE, the usage frequencies for codons
AUA and AGG were 0.26 and 0.22, which was much higher than those
for the average B, gsubtilig proteins, which were 0.10 and 0.10,
respectively. This preliminary analysis suggests to us that P23
and dnaE are expressed at lower levels than rpoD, which was not
unexpected for dpnaE since the DNA primase is required only in
small amounts during DNA replication (25). Also consistent with
this idea were the relative strengths of the ribosome binding
sites for the three genes, which were found in an increasing
order of AG' = -9.2 kcal/mol for P23, -13.8 kcal/mol for dnaE and
-18.8 kcal/mol for rpoD.

Since we do not know the function of P23, we can only
speculate that it may have some role in translation or act as a
regulatory protein present in relatively low concentrations in
the cell.

4303



Nucleic Acids Research

A, _'Iﬂ_“. dnalE rpoD
(s88) (33 (1809) (198) [{137)
B. Ld anaC 1 TpoD i’
(213400 (1740) ({1 /] (1839)

Figure 3. Schematic representation of the organization of B. subtilis
(A) and E. coli (B) major ¢ operoms. -

The number of base pairs is shown in parentheses for each structural unit.
The organization of the E. coli o’? operon is based on results from Burton
et al. (10) and Lupski et al., (26). For simplicity, internal promoters
and RNA processing sites are not shown.

Operon Organization

A comparison of the two major o operons from B, gubtilis
and E, ¢oli is illustrated in Fig. 3. Both operons contain
three genes including the DNA primase and major 0 genes,
which are ordered in the same way. The operons are all under

control of multiple promoters, indicating a complex transcription
regulation system. However, significant differences do exist

between them, of which the most striking is the first gene in the
operon. P23 is more than twice as large as S21, and there

is no sequence homology at all between them, while the middle
gene products (DNA primases) are 31% homologous (8), and the last
gene products (major ¢ factors) more than 50% homologous (6).
Also different are the sizes of the intercistronic regions
between the first and second genes, 33 bp in B. gubtilis and 110
bp in E. ¢oli, while that between the second and third genes are
very similar in size (8,10). In E. coli, there is a mRNA
processing site immediately following the dnaG gene (10), which
was not found in B. subtilijs.

We determined the nucleotide sequence of a 5 kb fragment in
the dnaE-rpoD region of the B, subtilis chromosome and found
three open reading frames transcribed in the same counterclock-
wise direction, two of which were identified as genes for the DNA
primase and RNA polymerase major ¢*® factor. The function
of the first gene is still unknown. Discovery of the promoters
in front of P23 and a terminator 3' to rpoD, and the absence of
promoters in the intercistronic regions between these genes
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provided strong evidence that P23, dnaE, and rpoD comprised a
three gene operon. The operon was named RNA polymerase major
sigma (¢“®) operon in analogy to that in E. c¢olj.

The structure and organization of the ¢“?® operon resemble
those of the E. ¢oli ¢’" operon except for the first gene. The
size of P23 and its lack of amino acid sequence homology with S21
represent the most significant differences between the two
operons at the molecular level. Since a reasonably high degree
of homology exists between the DNA primase and ¢ genes, one
might have expected some homology between the first genes P23 and
IpsU. We are currently attempting to identify P23 by use of
immunological and cell fractionation techniques to see whether
P23 might be associated with the ribosome fraction of B.

btilis.

The regulation of the E. coli ¢’" operon is very
complex since it is an important operon controlling not only
translation, but also DNA replication and transcription (10,26).
One of its interesting features is the control mechanism(s) to
keep the expression of the dnaG gene lower than its adjacent
genes, rpsU and rpoD. At least four mechanisms have been
proposed including an internal terminator between the first and
second genes (10), a weak ribosomal binding site for dpaG (10),
frequent use of rare codons (27), and a mRNA processing site
between the second and third genes (10). Although no
experimental data are available concerning the expression level
of dnak in vivo, a low expression is expected from its function,
and its counterpart in E. ¢olj. The results of our codon usage
analysis and the comparison of ribosomal binding sites are also
in good agreement with the notion that dnaE represents a weakly
expressed gene, and rpoD a fairly highly expressed gene.
However, besides the possible regulatory mechanisms at the
translational level, it is very likely that there are also
control mechanism(s) involved at the transcriptional level.

In general, B, subtilis requires a more stringent Shine-
Dalgarno sequence for gene expression than E. coli (28,29). The
calculated free energies of interaction of the Shine-Dalgarno
regions of B, gubtilis mRNAs with the 3' end of its 16s rRNA
have an average value of -17 kcal/mol (30), contrasted with an
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average of -11 kcal/mol for that in E. coli (31). However, the
calculated free energy value for P23 gene, -9.2 kcal/mol, is far
below that of the average for B. gsubtjlig. Considering this and
the codon analysis data, it is tempting to propose that P23
encodes a reqgulatory protein which is weakly expressed, but
physiologically important. Also, since B, gubtilis cells undergo
differentiation and can form spores, it is possible that the
cell may have evolved a unique regulation system that is absent
in E. ¢oli, and that P23 may be one of the members in that
system. The possibility also exists that P23 encodes an
unidentified component of the B, gubtiligs translation machinery
which is absent or has not been identified as yet in E.

coli, since it has been reported that sequences other than the
Shine-Dalgarno region can affect the translation efficiency

of a gene (29,32); it thus is possible that P23 might still be
expressed efficiently in vivo. More experimental data

are required before we can say anything conclusive about this
cryptic gene.
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