Figure S1 A & C

Α

Affibody proteins

Monomer His₆-Z_{HER2:342}-Cys (*M*_r=8318)

Dimer His₆-(Z_{HER2:477})₂-Cys (*M*_r=14862)

ABD-(Z_{HER2:342})₂-Cys (*M*_r=19213) Alexa Fluor dyes

+

Alexa Fluor 680 C₅-maleimide (*M*_r~1000)

Alexa Fluor 750 C₅-maleimide $(M_r \sim 1350)$

Resulting conjugates

-

Affibody-Alexa Fluor 488 (*M*,=9040)

Affibody-Alexa Fluor 680 (*M*,=9318)

Affibody-Alexa Fluor 750 (*M*_r=9668)

Figure S1 B

0.25 ml-eluted fractions of NAP-5 column (1/50 of each fraction loaded)

Type of file: tableLabel:tables and legentsFilename:Supplementary Tables and Figure legend.pdf

Supplementary Table S1. FACS analyses after labeling with Affibody-Alexa Fluor 488 conjugate

Labeling of SKBR-3 cells	% of control
Alexa Fluor 488 Dye ()	1.1 ± 0.5
5 nM Affibody-Alexa Fluor 488 conjugate (94.6 ± 2.7
50 nM Affibody-Alexa Fluor 488 conjugate (98.9 ± 0.6
5 nM conjugate + excess unlabeled Affibody (0.8 ± 0.3
50 nM conjugate + excess unlabeled Affibody (—)	1.1 ± 0.7

Labeling of U251 cells	% of control
Alexa Fluor 488 Dye ()	0.9 ± 0.4
5 nM Affibody-Alexa Fluor 488 conjugate (2.2 ± 1.5
50 nM Affibody-Alexa Fluor 488 conjugate (5.3 ± 2.2
5 nM conjugate + excess unlabeled Affibody (1.0 ± 0.7
50 nM conjugate + excess unlabeled Affibody (—)	3.4 ± 1.1

NOTE: Percentages of cells under the gate designated as M1 in each sample shown in Fig. 2A are presented as mean \pm SD from three independent experiments with duplicate samples.

Supplementary Table S2. FACS analyses after double labeling with Affibody-Alexa Fluor 488 and

Trastuzumab-Alexa Fluor 680 conjugates

Both bound	Trastuzumab- Alexa Fluor 680 bound	Affibody-Alexa Fluor 488 bound	None bound
98.3 ± 1.1	0.4 ± 0.3	1.1 ± 0.4	0.2 ± 0.1
1.6 ± 0.5	97.0 ± 1.3	0.8 ± 0.1	0.5 ± 0.3
0.3 ± 0.2	0.5 ± 0.2	98.3 ± 0.9	0.8 ± 0.3
0.6 ± 0.2	0.4 ± 0.2	1.5 ± 0.4	97.4 ± 0.1
0.2 ± 0.1	0.3 ± 0.2	0.7 ± 0.3	98.7 ± 0.9
0.2 ± 0.2	0.4 ± 0.2	0.2 ± 0.1	99.2 ± 0.5
0.1 ± 0.1	0.2 ± 0.1	0.6 ± 0.4	99.0 ± 0.7
0.3 ± 0.1	0.1 ± 0.1	0.6 ± 0.5	98.9 ± 0.8
	Both bound 98.3 ± 1.1 1.6 ± 0.5 0.3 ± 0.2 0.6 ± 0.2 0.2 ± 0.1 0.2 ± 0.1 0.3 ± 0.1	Both boundTrastuzumab- Alexa Fluor 680 bound 98.3 ± 1.1 0.4 ± 0.3 1.6 ± 0.5 97.0 ± 1.3 0.3 ± 0.2 0.5 ± 0.2 0.6 ± 0.2 0.4 ± 0.2 0.2 ± 0.1 0.3 ± 0.2 0.2 ± 0.1 0.2 ± 0.1 0.2 ± 0.1 0.2 ± 0.1 0.3 ± 0.1 0.1 ± 0.1	Both boundTrastuzumab- Alexa Fluor 680 boundAffibody-Alexa Fluor 488 bound 98.3 ± 1.1 0.4 ± 0.3 1.1 ± 0.4 1.6 ± 0.5 97.0 ± 1.3 0.8 ± 0.1 0.3 ± 0.2 0.5 ± 0.2 98.3 ± 0.9 0.6 ± 0.2 0.4 ± 0.2 1.5 ± 0.4 0.2 ± 0.1 0.3 ± 0.2 0.7 ± 0.3 0.2 ± 0.2 0.4 ± 0.2 0.2 ± 0.1 0.1 ± 0.1 0.2 ± 0.1 0.6 ± 0.4 0.3 ± 0.1 0.1 ± 0.1 0.6 ± 0.5

NOTE: Percentages of cells in each gate shown in Fig. 2*B* are presented as mean \pm SD from three independent

experiments with duplicate samples.

Supplementary Figure Legend

Supplementary Figure S1. *A*. Schematic representation of conjugation chemistry. *B*. Typical analysis of conjugation reactions using SDS-PAGE and silver staining. *C*. Surface plasmon resonance analysis of Affibody $Z_{HER2:342}$ –Alexa Fluor 750 binding to the extracellular domain of HER2 using the Biacore instrument to measure affinity and binding kinetics. Affibody $Z_{HER2:342}$ and $Z_{HER2:342}$ –Alexa Fluor 750 were diluted 2-fold serially from 500 to 7.8 pmol/L and injected, followed by two injections of buffer as described in "Materials and Methods". Concatenated data from Affibody $Z_{HER2:342}$ –Alexa Fluor 750 binding were shown here. The red lines represent the fitted lines according to a 1:1 binding model.