Supplementary Information for

Oxidative Stress Effect of Dopamine on α-Synuclein: Electroanalysis of solvent interactions

Tiffiny Chan,^a Ari M. Chow,^b Xin R. Cheng,^a Derek W. F. Tang,^b Ian R. Brown,^b Kagan Kerman^{a,b}*

^a Department of Physical and Environmental Sciences,

^b Centre for the Neurobiology of Stress, Department of Biological Sciences,

University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada

Corresponding author: <u>*kagan.kerman@utoronto.ca</u>

Tel: +1-416-287-7249

Supplementary Figure 1. Cyclic voltammograms of 1 mM dopamine (DA). 1 (blue), 2 (red), and 3 (black) represent the number of consecutive scans at a carbon paste electrode with a scan rate of 50 mVs^{-1} , Initial scan: -0.50 V, Final scan: 0.50 V.

Supplementary Figure 2. UV-vis study for the pH dependence of DA oxidation with 200 μ M DA in 5 mM sodium acetate/5 mM sodium phosphate at different pH values. A) Absorbance spectra were obtained every 1 h for 24 h (arrows indicate change in absorbance, B) Plot for the absorbance value at 280 nm vs. time (pH 7-blue, pH 4-red, pH 11-green).

Supplementary Figure 3. Electrochemical study for the pH dependence of DA oxidation in the presence of 1 μ M α -synuclein (AS). AS was incubated with and without 5 μ M DA at pH 4, 7 and 11 in 5 mM sodium acetate/5 mM sodium phosphate buffer at 37 ± 1°C with shaking for 48 h. (Dark blue line – absence of DA, Light blue line – presence of 5 μ M DA).