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1 Proofs

1.1 Idea of the proofs and geometrical intuition
To derive the theorems stated in the main text we use two key mathematical concepts. The first is the ergodic
theorem which states that for i.i.d. input signals u (t) with distribution p(u), and under appropriate technical
conditions, one can replace time averages by ensemble averages, i.e., that h·iT = h·iU1 [1, 2, 3]. The second is
that by introducing the Hilbert space of fading memory functions one can reason in a space that has much more
structure than the set of time series, and thereby get stronger results and better intuition. We first sketch how the
theorems should follow from these two concepts. The detailed proofs are given in full below.

We place ourselves in the conditions of Theorem 7, namely we have N linearly independent fading memory
dynamical variables xi(u�1

) 2 HU1 . We denote by HX ⇢ HU1 the N dimensional subspace consisting of the
span of memory functions xi(u�1

). An orthonormal basis for HX can be constructed by taking suitable linear
combinations of the original output functions: x̄j =

P
i ⇤jixi, hx̄i, x̄jiU1

= �ij , i, j = 1 . . . N . (Note that the
capacity CT [X, z] does not change under an invertible linear transformation carried out on the xi). Let ⇧X (·)
be the projector onto HX , which can be written as ⇧X (·) =

P
ih·, x̄iiU1 x̄i. Using the definition eq. (1.6) and

ergodicity, the capacity for reconstructing a function z using a linear combination of the observation functions can
be written as:

lim

T!1
CT [X, z] =

1

kzk2U1

NX

i=1

hz, x̄iiU1hx̄i, ziU1
=

k⇧(z)k2U1

kzk2U1

, (1.1)

which is ratio of the the squared norm of the projection of z onto HX to the squared norm of z. This implies the
normalization condition 0  limT!1 CT [X, z]  1. 1

Let us now consider a finite orthonormal set of functions in HU1 : YL = {y1, . . . , yL}. Denote by ⇧Y
L

the
projector onto the space spanned by YL. Then (once again using ergodicity) the sum of the capacities for the yl

LX

l=1

lim

T!1
CT [X, yl] =

LX

l=1

NX

i=1

hyl, x̄iiU1hx̄i, yliU1
=

NX

i=1

k⇧Y
L

(x̄i)k2U1 (1.2)


NX

i=1

kx̄ik2U1 = N (1.3)

is the sum of the norm square of the projection of the x̄i onto the space spanned by the yl. Each of these terms
is bounded by the norm square of the x̄i (this is known as Bessel’s identity) which is 1, giving an overall bound of
N . In the limit where YL constitutes an orthonormal basis for HU1 the projection ⇧Y

L

is the identity operator,
k⇧Y

L

(x̄i)k2U1 = kx̄ik2U1 , and one has equality in eq. (1.2).

1.2 Normalization of Capacity
Here we prove Proposition 3.

1
Note that Prop. 3 is stronger since it states that the normalization holds for all finite times T , and also for dynamical systems that

are not fading memory.
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Figure 1.1: Geometrical picture of dynamical system and capacities. The fading memory dynamical system has
two variables, x1 and x2 (not pictured). The vectors x̄1 and x̄2 (pictured) are an orthonormal basis of the space
spanned by x1 and x2. For the sake of the representation, we consider a three dimensional subspace of the Hilbert
space containing the two vectors x1 and x2. We consider a function z. Its projection on the space spanned by x̄1

and x̄2 is denoted ⇧X(z), and the corresponding components along x̄1 and x̄2 by ⇧x
1

(z) and ⇧x
2

(z). The capacity
to reconstruct z is given by cos

2
(✓), where the ✓ is the angle between z and ⇧X(z). Note that ⇧X(z) = kzk cos(✓).

Proof. Any time series f(t), t = 1, ..., T can be viewed as a vector in RT . Hence the time average of a product

1

T

TX

t=1

f(t)g(t) = hf, giT (1.4)

can be viewed as the standard scalar product on RT .
Consider the output time series xi(t), t = 1, ..., T . We denote the correlation matrix by

Rii0 = hxi, xi0iT (1.5)

and by R�1
ii0 the inverse of the matrix Rii0 . (For simplicity we suppose that R has full rank, otherwise we restrict

the analysis to the subspace on which R is nonzero). Since Rii0 is a symmetric matrix it can be diagonalized, and
in particular one can define a matrix ⇤ii0 such that ⇤

TR⇤ = I (i.e.,
P

kl ⇤kiRkl⇤lj = �ij). This allows us to define
new internal variables through x̄i =

P
j ⇤kixj . In terms of these new variables we have

¯Rii0 = hx̄i, x̄i0iT = �ii0 . (1.6)

That is the time series x̄i(t), t = 1, ..., T are orthogonal normalized vectors of RT for the scalar product eq. (1.4).
Consider a target function z(t) and an estimator ẑ(t) =

P
i Wixi(t). When varying the MSE with respect to

Wi, one finds that the optimal linear estimator is given by Wi =
P

i0 R
�1
ii0 Pi0 with Pi = hxi, ziT . This implies the

following identities for the optimal linear estimator:

ẑ(t) =

X

i

x̄i(t)hx̄i, ziT (1.7)

hbz2iT = hẑẑiT =

NX

i,j=1

PiR
�1
ij Pj =

NX

i=1

hx̄i, zi2T (1.8)

MMSET = hz2iT � hbz2iT (1.9)

CT [X, z] =

hbz2iT
hz2iT =

PN
i,j=1 PiR

�1
ij Pj

hz2iT =

PN
i=1hx̄i, zi2T
hz2iT (1.10)

Equation (1.7) shows that the best linear estimator ẑ(t) =

P
i Wixi(t) of a time series z(t) is the orthogonal

projection of z(t) onto the subspace of RT spanned by the xi(t). Equation (1.10) then implies that the capacity
for reconstructing z is the ratio of the norm squares of the projection ẑ(t) and of the original time series z(t):
CT [X, z] = hẑ2iT /hz2iT . Hence the capacity to reconstruct z is normalized according to 0  CT [X, z]  1 for any
time series z(t) and any output time series xi(t).

1.3 Ergodicity
Central to the proofs below is the theory of stochastic processes. For an introduction see, e.g., [1, 2, 3]. The main
tool we will use is the ergodic theorem, that is the possibility, for most functions y : U1 ! R, to replace the time
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average by the ensemble average:

lim

T!1

1

T

TX

t=1

y(t) = EU1
[y] = hyiU1 . (1.11)

To formalize this notion it is useful to introduce the time translation operator: U⌧ which acts as follows: U⌧y[..., u�2, u�1,u0] =

y[..., u�2�⌧ , u�1�⌧ , u�⌧ ]. We also introduce the covariance Covy(⌧) = EU1
[(y � hyiU1

) (U⌧y � hyiU1
)]. We will

use the following result which is sufficiently simple that for completeness we give the proof:

Proposition 8. (Ergodic Theorem). Consider a function y : U1 ! R with finite variance var[y] = EU1

h
(y � hyiU1

)

2
i
<

1 and such that its covariance tends to zero for long times, lim⌧!1 Covy(⌧) = 0. Then the time average of y
converges to the ensemble average in mean square:

lim

T!1
EU1

2

4
 

1

T

TX

t=1

y(t)� hyiU1

!2
3

5
= 0. (1.12)

Note that convergence in mean square implies convergence in probability: for all ✏, � > 0, there exists T > 0

such that

Prob

"
1

T

TX

t=1

y(t)� hyiU1 > ✏

#
< �. (1.13)

Proof. First note that the Cauchy-Shwarz inequality implies Covy(⌧) < V ar[y] for all ⌧ .
Second, note that lim⌧!1 Covy(⌧) = 0 is equivalent to: for all ✏ > 0, there exists ⌧ > 0 such that for all t > ⌧ ,

Covy(⌧) < ✏.
Third, fix ✏ > 0 and ⌧ > 0 as above, and rewrite

EU1

2

4
 

1

T

TX

t=1

y(t)� hyiU1

!2
3

5
=

1

T
V ar[y] +

2

T 2

⌧X

t=1

(T � t)Covy(t) (1.14)

+

2

T 2

TX

t=⌧+1

(T � t)Covy(t) (1.15)

from which we obtain EU1

⇣
1
T

PT
t=1 y(t)� hyiU1

⌘2�
 (1+2⌧)

T V ar[y]+ 2✏. Hence for sufficiently large T , we have

EU1

⇣
1
T

PT
t=1 y(t)� hyiU1

⌘2�
< 3✏ which proves the result.

1.4 Proof of bound on capacity
Here we prove Theorem 4.

Proof. We need to show that
LX

l=1

CT [X, yl] =
NX

i=1

LX

l=1

hx̄i, yli2T
hy2l iT

(1.16)

is bounded by N in the limit T ! 1 if hylyl0iUh = �ll0 and hy4l iUh < 1, where we have used the variables x̄i(t)
defined such that their correlation matrix is the identity, see eq. (1.6).

The idea of the proof is that, since hylyl0iUh = �ll0 , the ergodic theorem implies that
P

l yl(t)yl(t
0
)/hy2l iT , viewed

as T ⇥ T matrix, is “almost” an orthogonal projector onto a L dimensional subspace of RT . Then one should haveP
l
hx̄

i

,y
l

i2
T

hy2

l

i
T

. hx̄2
i iT from which follows the result. The technicalities consist of taking care of the “almost”.

Ergodicity (which is where the condition hy4l iUh < 1 comes in) implies that, with probability at least 1� �, for
sufficiently large T , hylyl0iT = �ll0 + ✏ll0 with |✏ll0 | < ✏ (we use the fact that L < 1 is finite to ensure that �, ✏ are
independent of l, l0).

Let us define zk(t) =
P

k0 Okk0yk0
(t) with Okk0 an orthogonal matrix, such that hzkzk0iT = �k�kk0 is diagonal.

We have
�k = hz2kiT = 1 +

X

k0k00

Okk0Okk00✏k0k00 .
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Hence with probability at least 1� �, |�k � 1| < L2✏ where we use that |Okk0 | < 1.
We can express yk in terms of zk as yk(t) =

P
k0 Ok0kzk0

(t). Using this relation and the fact that Okk0 is an
orthogonal matrix we obtain that with probability at least 1� �:

LX

k=1

CT [X, yk] =

NX

i=1

LX

k=1

P
k0k002Khx̄i, zk0iTOk0kOk00khzk00 , x̄iiT

(1 + ✏kk)
.

 1

1� ✏

NX

i=1

LX

k0k00=1

hx̄i, zk0iT
 

LX

k=1

Ok0kOk00k

!
hzk00 , x̄iiT

 1

1� ✏

NX

i=1

LX

k=1

hx̄i, zkiT hzk, x̄iiT

 1 + L2✏

1� ✏

NX

i=1

LX

k=1

1

�k
hx̄i, zkiT hzk, x̄iiT

We define the functions x̄k(t) = zk(t)/
p
�k which form an orthonormal basis of RT . Therefore, with probability at

least 1� �, we have

LX

k=1

CT [X, yk]  1 + L2✏

1� ✏

NX

i=1

LX

k=1

hx̄i, x̄ki2T .

Bessel’s identity implies that
PL

k=1hx̄i, x̄ki2T  hx̄2
i iT = 1. Hence with probability at least 1� �,

LX

k=1

CT [X,Pk]  1 + L2✏

1� ✏
N .

Taking ✏ ! 0 (and hence T ! 1) concludes the proof.

1.5 Hilbert space of fading memory functions
The Hilbert space of fading memory functions plays a central role in our analysis. We introduce here the basic
notions we need. For introductions to the theory of Hilbert spaces, see, e.g., [4].

We recall that HU is the Hilbert space of functions f : U ! R that depend on a single input u 2 U , with scalar
product given by the probability measure on U : hx, yiU = EU [xy]. It is well known that HU constitutes a Hilbert
space, known as the weighted L2 space. We make the hypothesis that the Hilbert space HU is separable, i.e., that
any basis of HU is either finite number or denumerable. We choose a basis of HU composed of the function yj(u),
j 2 N, with the first basis vector equal to the constant function y0(u) = 1.

The Hilbert space HUh of functions that depend on a finite number h of inputs is the tensor product of h copies of
HU : HUh = ⌦h

j=1HU
j

. The scalar product on HUh is given by the probability measure on Uh: hx, yiUh = EUh [xy].
The set of all products yj

1

yj
2

...yj
h

: Uh ! R constitutes a basis of HUh .
The Hilbert space HU1 of fading memory functions is a subspace of the space of functions from U1 ! R. We

give two definitions of HU1 and then show that they are equivalent:

Definition 9. Hilbert space of fading memory functions: Cauchy sequences. The Hilbert space HU1 of fading
memory functions is defined as the limit of functions xh on HUh , as h increases as follows:

1. If x 2 HUh , then x 2 HU1 , and hx, xiU1
= hx, xiUh .

2. Consider a sequence xh 2 HUh , h 2 N belonging to larger and larger tensor products HUh . Then the
limit limh!1 xh exists and is in HU1 if for all ✏ > 0, there exits h0 2 N, such that for all h, h0 > h0,
k xh � xh0 k2

Umax(h,h

0
)

< ✏.

3. Conversely, all x 2 HU1 are the limit of a sequence of the type given in 2).

4. If x, x0 2 HU1 , then their scalar product is defined as hx0, xiU1
= limh,h0!1hx0

h0 , xhi, where xh ! x and
x0
h ! x0 are any two Cauchy sequences that converge to x and x0 according to 2) above.
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Definition 10. Hilbert space of fading memory functions: basis construction. A basis of the Hilbert space HU1

of fading memory functions is given by all products yj = yj
1

(u1)yj
2

(u2)...yj
h

(uk)... : U1 ! R where only a finite
number of terms are different from the constant function y0 = 1.

Proposition 11. Definitions 9 and 10 are equivalent.

Proof. First note that the basis vectors according to definition 10 are labeled by j = j0j1j2... where the jk 2 N
(k 2 N) are positive integers, all but a finite number of which are different from zero. Hence the basis given in
definition 10 is denumerable, hence the space HU1 according to definition 10 is isomorphic to l2.

For any basis function yj with label j = j0j1j2..., we denote by h(j) 2 N the largest index k such that jk 6= 0.
Note that for any h 2 N, any j such that h(j)  h, the corresponding basis function yj belongs to HUh . Therefore
according to both definitions 9 and 10 the space HU1 is defined as the limit of functions in HUh for h increasing.
It remains to show that there is a one to one correspondence between the elements of the spaces built according to
definitions 9 and 10.

Consider any vector x =

P
j cjyj 2 HU1 according to definition 10. We can write x =

P
j;m(j)h cjyj +P

j;m(j)>h cjyj and define the vectors xh =

P
j;m(j)h cjyj 2 HUh . The set of vectors xh are a Cauchy sequence

according to both definitions 10 and 9. Thus any vector according to definition 10corresponds to a unique vector
according to definition 9.

Consider any vector x 2 HU1 according to definition 9. If xh is a Cauchy sequence converging to x according
to 9, then we can write xh =

P
j;m(j)h c

h
j yj 2 HUh and (chj ) is a Cauchy sequence in l2. We can therefore

identify the limit limh!1(chj ) with the corresponding limit vector in HU1 according to definition 10: limh!1 xh =

P
j

⇣
limh!1 chj

⌘
yj. Thus any vector according to definition 9 corresponds to a unique vector according to definition

10.
Third, it is obvious that the above one to one correspondence between the two spaces preserves the scalar

product, hence it is an isomorphism.

Proposition 12. If x 2 HU1 , then the covariance of x tends to zero at large times: lim⌧!1 Covx(⌧)=0

Proof. Suppose without loss of generality that hxiU1
= 0. Since x 2 HU1 , there exists a sequence xh 2 HUh , such

that for any ✏ > 0, there exists h0 such that h � h0 implies d(x� xh) < ✏. For any ⌧ > h0, we have

Covx(⌧) = d(x,U⌧x)

 d(x, xh
0

) + d(xh
0

,U⌧xh
0

) + d(U⌧xh
0

,U⌧x)

 2✏

which proves the result.

1.6 Saturation of total capacity for fading memory systems
Because the dynamical system has fading memory, its output functions xi(t) are uniquely determined by the previous
inputs, and can be identified with fading memory functions xi(t) = xi [u�1

(t)] with xi[u�1
] in HU1 . Indeed the

convergence condition EUt+T

0
�
xi(t)� xh

i

⇥
u�h

(t)
⇤�2

< ✏ for all h > h0 in the definition of fading memory dynamical
systems is precisely the condition that the functions xh

i have a limit in HU1 . This limit will coincide with the output
functions xi(t) in the limit where the initialization time T 0 tends to infinity.

We now prove Theorem 7.

Proof. The idea of the proof is to use ergodicity to rewrite the memory capacity as an ensemble average, and then
to use Perceval’s identity.

We define the correlation function ˜Rij = hxixjiU1 . Because in the limit T ! 1, the correlation matrix
Rii0 = hxi, xi0iT has rank N , it follows from the Ergodic theorem that ˜R also has rank N . The matrix ˜R can
therefore be diagonalized. We introduce an invertible matrix ⇤ij and new function xi [u�1

(n)] =
P

j ⇤ijxi [u�1
(n)]

such that hxixjiU�1
= �ij .

For any finite time T , the memory capacity for target function yk[u�h
] can be re-expressed in terms of the x as:

CT [X, yk] =
NX

i,j=1

hyk, xiiT hxixji�1
T hxj , ykiT

hy2kiT
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Taking the limit T ! 1, all quantities hyk, xiiT , hxixjiT , hy2kiT tend towards their ensemble average (because of
the Ergodic Theorem, which can be applied in view of the conditions hx4

i iU1 < 1, hy4kiU1 < 1). Using the same
kind of reasoning as in the proof of Theorem 4, we can show that

lim

T!1
CT [X, yk] =

NX

i,j=1

hyk, xiiU1hxixji�1
U1hxj , ykiU1

hy2kiU1
=

NX

i=1

hyk, xii2U1 .

In the limit K ! KCS , where KCS denotes a complete set of functions, the functions yk[u�1
] are an orthonormal

basis of functions on HU1 . Hence any function f 2 HU1 can be expanded as f =

P
k2K

CS

ckPk with ck = hykfiU1 .
Perceval’s identity states that

P
k2K

CS

|ck|2 = hf2iU1 . In particular we can expand xi =
P

k2K
CS

x̄ikPk and we
have

P
k2K

CS

|x̄ik|2 = 1. Hence

lim

T!1

X

k2K

CT [X, yk] =
NX

i=1

X

k2K

|x̄ik|2 .

Taking the limit K ! KCS , we have

lim

K!K
CS

lim

T!1

X

k2K

CT [X, yk] =
NX

i=1

lim

K!K
CS

X

k2K

|xik|2 =

NX

i=1

= N .

which is the result we wanted to prove.

2 Defining Capacities in terms of Correlation Coefficients

Rather than definition eq. (1.6), one can also define the capacities as

C 0
T [X, z] =

P
ij cov(zxi)cov(xixj)

�1
cov(xjz)

var(z)
(2.1)

where cov(x, y) = hxyiT � hxiT hyiT and var(x) = cov(x, x).
The two definitions are inequivalent but all the results for CT also hold for C 0

T . The original definition eq.
(1.6) is more natural from a geometric and Hilbert space point of view, because definition eq. (2.1) implies that
the constant function y

⇥
u�h

⇤
= 1 is treated specially, while from the point of view of Hilbert space HUh it is just

one function among many others. However, from the point of view of signal processing and statistical analysis,
definition eq. (2.1) may seem more natural. It also makes contact with the work of [5] which used this definition.

For completeness we state the properties of C 0
T . First we have the normalization:

0  C 0
T [X, z]  1 (2.2)

SecondTheorem 4 holds provided its statement is replaced by:

Corollary 13. Consider a dynamical system as described above with N output functions xi(t) and choose a positive
integer h 2 N. Consider any finite set Y 0

L = {y01, ..., y0L} of size |Y 0
L| = L of functions yl 2 HUh obeying the

orthogonality condition hy0l, y0l0iUh � hy0liUhhy0l0iUh = cl2�ll0 , l, l0 = 1, ..., L. We further require that the fourth
moment of the y0l is finite hy04

l iUh < 1. Then, in the limit of an infinite data set T ! 1, the sum of the capacities
for these functions is bounded by the number N of output functions (independently of h, of the set Y 0

L, or of its size
|Y 0

L| = L):

lim

T!1

LX

l=1

C 0
T [x, y0l]  N. (2.3)

Finally Theorem 7 holds provided its statement is replaced by

Corollary 14. Consider a dynamical system with fading memory as described above with N accessible variables
xi(t). Because the dynamical system has fading memory, we can identify the output functions with functions
xi(u�1

) in HU1 . Consider an increasing family of functions in HU1 : Y 0
L = {y01, ..., y0L} with YL ✓ YL0 if L0 � L

and y0l 2 HU1 , hy0l, y0l0iUh � hy0liUhhy0l0iUh = cl2�ll0 , l, l0 = 1, ..., L. , such that in the limit L ! 1, the sets YL tend
towards a complete set of functions in HU1 . Suppose that the readout functions xi(u�1

) and the basis functions
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y0l(u
�1

) have finite fourth order moment: hx4
i iU1 < 1, hy04

l iU1 < 1. Consider the limit of an infinite data set
T ! 1 and infinite initialization time T 0 ! 1. Suppose the covariance matrix Rii0 = limT,T 0!1 cov(xixi0) has
rank N . Then the sum of the capacities C 0

T [X, yl] for the sets Y 0
L tends towards the number N of output functions:

lim

Y 0
L

!complete set

"
lim

T,T 0!1

LX

l=1

C 0
T [X, y0l]

#
= N . (2.4)

We sketch the proofs.
Eq. (2.2) is proven by inserting x0

i = xi � hxiiT and z0 = z � hziT into eq. (1.7) .
To prove Corollaries 13 and 14, we replace the original dynamical system with variables X ⌘ (x1, ..., xN ), by

a new dynamical system with variables X 0 ⌘ (x0
1, ..., x

0
N ) where x0

i = xi � limT!1hxiiT , and we replace all sets
of functions Y 0

L = {y01, ..., y0L} by Y L = {y1, ..., yL} with yi = y0i � hy0iiU1 . Theorems 4 and 7 hold for the new
dynamical system X 0 and the sets YL. Using the fact that limT!1 C 0

T (X, y0l) = limT!1 CT (X, y0l) we recover
Corollaries 13 and 14.

3 Estimating capacities in practice

3.1 Why the sum of capacities do not saturate the bound Theorem 7
Theorem 7 states that under very general conditions, when the state of a fading memory dynamical system de-
pends only on the history of its inputs u(t), the sum of the capacities should tend towards the number of linearly
independent readout functions. In practice this limit is generally not attained precisely. There are several possible
reasons for this underestimation:

1. The fading memory condition of theorem 7 is not satisfied. This can in principle be checked by measuring
the Lyapunov exponents of the input driven system. That is, starting the system in slightly different initial
conditions, and checking whether the system states diverge. As the result can depend on the specific input
stream and operating point of the system, a very large number of samples would need to be taken. Another
indication of the fading memory properties of the system can be given by measuring the so-called maximal
local Lyapunov exponent of the system [9]. This is an estimate of the mean maximal singular value of the
system’s Jacobian, where the mean is taken across the operating points of the driven system.

2. The system is affected by noise. Particularly for any experimental system, one expects that the system is
affected by many noise sources. These can be thought of as additional inputs. However the Theorem 7 only
applies if one takes into account all inputs to the system, including the noise. If some of the inputs are
unknown, then one is not summing over a complete set of functions so the bound will not saturate.

3. The convergence in theorem 7 is too slow. More precisely if we have at our disposal a finite data set x(t)
collected in time T . When computing the capacities CT [X, yl] one is essentially computing the coefficients
of the decomposition of the function xi onto the chosen basis yl. Because of the finite statistics, we must
restrict the estimation to a finite set l = 1, ..., L. In general the capacities for l > L outside this set will be
nonzero, leading to an underestimate. In addition this decomposition will have many very small but nonzero
coefficients. A finite data set will not be sufficient to estimate them reliably. As discussed below, contributions
that are too small to be estimated accurately should be set to zero, resulting in an underestimate of the total
capacity. A related issue is that it may be that one of the capacities CT [X, yl] is large, but that the index l is
very large, and because of finite statistics and finite analysis time, we did not estimated this specific capacity.

4. The outputs are linearly independent but very similar. In this case, the covariance matrix hxixjiT of the
outputs may be ill conditioned and its inversion, which is needed to compute the capacities, may become
inaccurate. This is also expressed by a very large value of the condition number (the ratio between the largest
and smallest eigenvalues) of hxixjiT . As was discussed in [6], when the condition number is very large, the
information carried by the corresponding principal components can be hard to extract accurately.

3.2 Overestimating small capacities
Proposition 3 states that the capacities are normalized 0  CT [X, yl]  1. If yl constitute a complete set, then most
of the capacities limT!1 CT [X, yl] will be very small. However, as we discuss below and have extensively checked
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on numerical examples, for finite times T the estimates of the capacities are affected by a systematic positive error
of order O(N/T ).

To understand the origin of this systematic error, consider the case where limT!1hxixjiT = �ij , limT!1hy2iT =

1 , and limT!1hx̄iyiT = 0, so that limT!1 CT [X, y] = 0. Write the estimated capacity as

CT [X, y] =
NX

i,j=1

hy, xiiT hxixji�1
T hxj , yiT

hy2iT '
NX

i=1

hy, xii2T =

NX

i=1

 
1

T

TX

t=1

y(t)xi(t)

!2

.

We first consider the simple case where xi(t) and y(t) are independent identically distributed (i.i.d.) random
variables for all t = 1, .., T . From the normalization these random variables have variance 1, and independence
implies that limT!1hx2

i y
2iT = 1. Furthermore, the central limit theorem then implies that 1

T

PT
t=1 y(t)xi(t) ⇠

N(0, 1p
T
). Therefore the estimated capacity CT [X, y] is the sum of squares of normally distributed random variables,

hence following a �2
(N) distribution: CT [X, y] ⇠ 1

T �
2
(N). It is positive, has mean N/T and variance 2N/T 2.

In most cases xi(t) and y(t) will not be independent. A good illustrative example consists of taking y (t) = u (t)

and x̄i (t) = u (t)u (t� 1). We still expect that 1
T

PT
t=1 y(t)xi(t) has a gaussian distribution. If limT!1 CT [X, y] =

0, then the mean of this gaussian is zero. Its variance is in general difficult to compute. For illustrative purposes,
we consider the case where xi(t) and y(t) at different times are independent. In this case the variance is given
by 1

T limT!1hx2
i y

2iT � 1
T limT!1hx2

i iT hy2iT =

1
T . Therefore CT [X, y] will be distributed as a sum of square

of gaussians, each with mean zero and variance ci/T with ci � 1, i.e., CT [X, y] is given by a generalised �2
(N)

distribution with mean Nm/T and variance 2Nv/T 2 for some constants m, v � 1.
This indicates that for finite times T the estimates of very small capacities are affected by a systematic positive

error of order O(N/T ). Unfortunately the proportionality constant in this systematic error cannot be estimated a
priori, except for independent variables.

In practice we proceed as follows: we choose a small probability p of mistakenly assigning a positive value to
capacities which are in fact zero (for concreteness we take p = 10

�4 – this value should be adjusted according to
how many capacities CT [X, yl] one wants to estimate). We define the threshold t such that P

�
�2

(N) � t
�
= p.

We then double this threshold to take into account that the estimate we have made only applies to independent
variables. All capacities for which the estimate CT [X, y] < 2t

T is found to be below this threshold (the factor 2 is
the doubling just mentioned) are replaced by the value zero.

3.3 Searching for Non-zero capacities
To estimate the capacities we simulate numerically the dynamical system, recording a long set of data (typically
T = 10

5 to 10

6 time steps). We then use the recordings of xi(t) to estimate the capacities. We proceed as follows:
We recall that the basis functions we use consist of all products of Legendre polynomials yl =

Q
i

Pd
i

(u (t� i)).

Using finite data, we cannot estimate the capacities for all basis functions, since the set of indices {di} is infinite.
Also, as we do not know in advance the type of computation a system performs, we prefer not to fix in advance the
set of basis functions we will consider. Rather, we have assumed an exploration strategy of the capacity space that,
to a large extent, succeeds in determining the relevant set of basis functions autonomously. We assume that the
capacities will generally decrease when the degree of the polynomial and the delay increase. The former assumption
was found to be true in all systems we studied experimentally, whereas the latter is generally true in average for
physical systems with fading memory. In practice we go over the indices {di} using 5 nested loops. These loops are
chosen such that the basis functions are enumerated by “increasing complexity”.

From outer loop to inner loop, these are: degree (the total degree of the basis function, i.e., the sum of all
individual polynomial degrees); variables (i.e., the number of time steps the basis function depends on, bounded
from above by the degree; power list (i.e., the degrees of the individual polynomials); window (i.e., the largest delay
minus the smallest delay plus 1, bounded from below by the number of variables; positions (i.e., delay values of the
variables within the window); delay (i.e., the smallest delay used in any of the basis functions). Using this loop nest
ensures that each basis function is counted only once.

In order to decide when to stop each loop, we assume that the capacities become smaller and smaller as the
complexity of the polynomial increases, i.e., as we go further and further in each loop. The threshold of section 3.2
is exploited exiting each loop whenever no scores above threshold are found.

This procedure is further modified as follows: in the outermost loop we treat the even and odd degrees separately.
We note also that for systems with delayed response or damped oscillations, one should not stop the delay loop
too soon. Depending on the system, the following approaches still allow autonomous exploration: ignoring the loop
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exit conditions up to a certain delay and/or to using a low-passed version of the measured capacity in the loop exit
condition.

3.4 Reaction Diffusion system
The Gray-Scott Reaction Diffusion (RD) system, supplemented by a time dependent input, is described by the
equations

(
@a

xy

@⌧ = dar2axy � axyb2xy + f (1.0 + ◆wxyu (⌧)� axy)
@b

xy

@⌧ = dbr2bxy + axyb2xy � (f + k) bxy

In these equations, the first term models the diffusion term, the second term the conversion of reagent A into B
(with normalised reaction rate). Reagent B is removed from the RD system through a semi-permeable membrane
with permeability f + k. The concentration of B on the other side of the membrane is 0.

Reagent A is supplied to the RD system through a semipermeable membrane with permeability f . In the usual
Gray-Scott system the abundance of A on the other side of the membrane is 1.0, and the rate at which A is supplied
is f(1.0� axy).

In our work we drive the RD system with a time dependent input u(t) where t is discrete time. We first
convert this into a continuous time input through u(⌧) = u(t) for tTS  ⌧ < (t + 1)TS for some sampling period
TS . We suppose that the concentration of A on the other side of the membrane is given by 1.0 + ◆wxyu (⌧) where
wxy 2 [�1,+1] is a function of x and y, and ◆ 2 [�1,+1] is a parameter used to determine how strong is the external
input. The spatial dependence of wxy is important, as it breaks the translational symmetry of the system.

We chose as parameters da = 0.01 and db = 0.02, f = 0.022, k = 0.02. Linear stability analysis indicates that in
this parameter region the system is bistable. We took the spatial extent of the system to be 40⇥ 40 (in arbitrary
spatial units), with periodic boundary conditions. Readout probes measuring the concentration of A were placed
in a regular square grid with spacing=8.0, yielding N = 25 readouts. One sample is taken per sampling period TS ,
yielding the readout functions xi(t).

For numerical integration, we used a spatial discretization step �x = 0.4 (yielding a 100x100 effective grid size).
The integration scheme used (Cellular Array model) is described in [7] and further discussed in [8]. In these works
it is recommended to use an internal time step of �t = �x2/(6.max(da, db)) which corresponds in our case to
�t = 4/3 (in arbitrary time units).

At each of the 100x100 grid points, an input weight wxy was drawn uniformly at random from the interval
[�1,+1].

In our work we investigated 10 different sampling periods comprised between 4  TS  40. Using this parameter
to change how the system processes the external information is interesting as it does not change the undriven
dynamics. We observe that as TS increases, the system looses linear memory, and becomes increasingly nonlinear.
If TS got too large, the system would evolve to a steady state for each input, loosing all memory.
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